
Competitive Perimeter Defense of Conical Environments

Shivam Bajaj1, Eric Torng2, Shaunak D. Bopardikar1,
Alexander Von Moll3, Isaac Weintraub3, Eloy Garcia3, David W. Casbeer3

Abstract— We consider a perimeter defense problem in a
planar conical environment in which a single vehicle, having
a finite capture radius, aims to defend a concentric perimeter
from mobile intruders. The intruders are arbitrarily released
at the circumference of the environment and they move ra-
dially toward the perimeter with fixed speed. We present a
competitive analysis approach to this problem by measuring
the performance of multiple online algorithms for the vehicle
against arbitrary inputs, relative to an optimal offline algorithm
that has information about entire input instance in advance.
In particular, we establish two necessary conditions on the
parameter space to guarantee (i) finite competitiveness of any
algorithm and (ii) a competitive ratio of at least 2 for any
algorithm. We then design and analyze three online algorithms
and characterize parameter regimes in which they have finite
competitive ratios. Specifically, our first two algorithms are
provably 1, and 2-competitive, respectively, whereas our third
algorithm exhibits different competitive ratios in different
regimes of problem parameters. Finally, we provide a numerical
plot in the parameter space to reveal additional insights into
the relative performance of our algorithms.

I. INTRODUCTION

This work considers a perimeter defense problem in a
conical environment involving a single vehicle that seeks
to intercept mobile intruders before they enter a specified
region (referred to as the perimeter). This scenario arises
when a UAV is required to tag (or relay critical information
to) intruders (targets) before they reach a specific region
of interest. The intruders are generated at the boundary of
the environment and move radially inwards with fixed speed
toward the perimeter. The vehicle, which has a finite capture
radius, moves with bounded speed (greater than that of the
intruders) with the aim of capturing as many intruders as
possible before they reach the perimeter. This is an online
problem as the number and the arrival location of intruders
is sequentially revealed over time.

Prior works in the area of perimeter defense have either
focused on determining optimal strategies of small number
of agents or consider a stochastic arrival process for the
intruders [1]–[3]. Although these studies provide valuable
insights, they do not address the worst-case performance
where the intruders might coordinate their actions [4].

1S. Bajaj and S. D. Bopardikar are with the Department of Elec-
trical and Computer Engineering, Michigan State University. Email:
bajajshi@msu.edu (Shivam Bajaj)

2E. Torng is with the Department of Computer Science and Engineering,
Michigan State University.

3A. Von Moll, I. Weintraub, E. Garcia and D. Casbeer are with Control
Science Center, Air Force Research Laboratory.

This research was supported in part by the Air Force Office of Scientific
Research Summer Faculty Fellowship Program, Contract Numbers FA8750-
15-3-6003, FA9550-15-0001 and FA9550-20-F-0005 and in part by NSF
Award ECCS-2030556. Approved for public release: distribution unlimited,
case number: AFRL-2021-3011.

In this work, we adopt a competitive analysis tech-
nique [5], to assess online vehicle motion planning algo-
rithms in the worst-case. In competitive analysis, we measure
the performance of an online algorithm, using the concept
of competitive ratio, which we formally define in Section II.

A related area of research is vehicle routing in which
inputs become available over time. Introduced on graphs
in [6], a typical approach requires that the vehicle routes
be re-planned as new information is revealed over time. We
refer the reader to [7] and the references therein for a review
of this literature. In most of the vehicle routing problems, the
input (known as demands) are static, and so, the problem is
to find the shortest route through the demands in order to
minimize (maximize) the cost (reward) such as total time or
number of inputs serviced. However, in perimeter defense
scenarios, the input (intruders) are not static. Instead, they
are moving towards a specified region and thus, this problem
is more challenging than the former. In our previous works,
we introduced perimeter defense problems in circular and
rectangular environments with stochastically generated input,
[3], [8]. The key distinction of this work from the past works
is the characterization of competitiveness for the worst-case
inputs, as opposed to the stochastically generated inputs.

Perimeter defense problems were first introduced for a
single vehicle and a single intruder in [9]. Since then,
perimeter defense has been mostly formulated as a pursuit-
evasion differential game. The multiplayer setting for the
same has been studied extensively as a reach-avoid game in
which the aim is to design control policies for the intruders
and the defenders [10]–[12]. A typical approach requires
computing solutions to the Hamilton-Jacobi-Bellman-Isaacs
equation, which is generally only suitable for low dimen-
sional state spaces and in simple environments [13], [14].
Recent works include [15]–[18]. Authors in [19] propose
a receding horizon strategy based on maximum matching,
[16], [17] consider a scenario wherein the defenders are
constrained to be on the perimeter and [18] extends the reach
avoid game to n-dimensional Euclidean spaces. Previously,
we introduced a perimeter defense problem for linear envi-
ronments based on the use of competitive analysis [20]. The
key distinction of this work from [20] is the geometry of the
environment which yields novel results in terms of optimally
placing the vehicle, role of capture radius and additional
conditions to ensure competitiveness of the algorithms.

The general contribution of this paper is that we consider
a conical environment of unit radius and angle 2θ in which
arbitrary number of intruders are released at the circumfer-
ence of the environment at arbitrary time instances. Upon
release, the intruders move radially inwards with fixed speed
v < 1 with the aim of reaching a conical perimeter of radius

ρ < 1 and angle 2θ. A single vehicle having a finite capture
radius r, moves with maximum speed of unity with an aim to
capture the intruders. Our main contributions are as follows.
We first establish two necessary conditions in the parameter
space for achieving a c-competitive algorithm with a finite c.
Specifically, we characterize the parameter regime in which
no online algorithm is c-competitive and a parameter regime
in which no algorithm can be better than 2-competitive.
Next, we design and analyze three classes of algorithms
and establish their competitiveness. Specifically, we identify
parameter regimes in which the first two algorithms are
provably 1 and 2-competitive, respectively, and the third
algorithm has a finite competitive ratio that varies with the
problem parameters (r, ρ, θ).

This paper is organized as follows. In section II, we
formally describe our problem and define competitive ratio
for online algorithms. Section III establishes the necessary
conditions. In section IV, we design and analyze three
algorithms and establish their competitive ratios, section
V provides additional insights through numerous parameter
space plots and finally, section VI summarizes this work
and outlines directions for future works. For brevity, we only
provide an outline for some of our intermediate results. The
detailed proofs of all results are available in [21].

II. PROBLEM DESCRIPTION

Consider a conical environment of E(θ) = {(y, α) : 0 <
y ≤ 1,−θ ≤ α ≤ θ} which contains a conical region
(referred to as perimeter) R(ρ, θ) = {(z, α) : 0 < z ≤
ρ < 1,−θ ≤ α ≤ θ}, where θ is measured with respect
to y−axis. Intruders are released at arbitrary time instants
at the circumference of the environment, i.e., y = 1. Each
intruder moves radially with a fixed speed v towards the
origin in order to breach the perimeter. The defense consists
of a single vehicle with motion modeled as a first order
integrator1 with a maximum speed of unity and a finite
capture radius r < ρ. A capture circle is defined as a circle
of radius r, centered at the vehicle’s location. An intruder
is captured and subsequently removed from E(θ) if it lies
within or on the capture circle. An intruder is lost if it reaches
the perimeter without being captured by the vehicle.

A problem instance P(θ, ρ, v, r) is characterized by four
parameters: the speed of the intruders, v < 1, the perimeter’s
radius 0 < ρ < 1, the angle that defines the size of
the environment as well as the perimeter, 0 < θ ≤ π
and, the capture radius r < ρ. An input instance I is
a set of tuples consisting of time instant t ≤ T , where
T denotes the final time instant, the number of intruders
N(t) that are released at time instant t, and the arrival
location of each of the N(t) intruders. Formally, I =
{t,N(t), {(1, α1), (1, α2), . . . , (1, αN(t))}}Tt=0,for any αl ∈
[−θ, θ], where 1 ≤ l ≤ N(t).

An online algorithm A assigns a velocity with at most unit
magnitude to the vehicle as a function of the input I(t) ⊂ I
revealed until time t, yielding the kinematic model, ẋ(t) =
A(I(t)), where x denotes the vehicle’s polar coordinates.
An optimal offline algorithm is a non-causal algorithm which

1The techniques and analysis used in this work can be extended to other
models such as double integrator, and would be addressed in a future work.

computes the velocity of the vehicle at any time t having the
information of the entire input instance I.

Definition 1 (Competitive Ratio) Given a problem in-
stance P(θ, ρ, r, v), an input instance I, and an online algo-
rithm A, let A(I) denote the number of intruders captured by
the vehicle when using A on input instance I. Let O denote
the optimal offline algorithm that maximizes the number
of intruders captured out of input instance I. Then, the
competitive ratio of A on I is defined as cA(I) = O(I)

A(I) ≥ 1,
and the competitive ratio of A for the problem instance P is
cA(P) = supI cA(I). Finally, the competitive ratio for the
problem instance P is c(P) = infA cA(P). An algorithm
is c-competitive for the problem instance P(θ, ρ, r, v) if
cA(P) ≤ c, where c ≥ 1 is a constant.

Problem Statement: The aim is to establish fundamental
guarantees and to design c-competitive algorithms for the
vehicle with minimum c.

In light of Lemma 1 in [20], it suffices to restrict to
extreme speed algorithms that either move the vehicle with
maximum speed, i.e., unity, or keep it stationary.

III. FUNDAMENTAL LIMIT FOR FINITE c

We will first establish necessary conditions in the space
of problem parameters (θ, v, r, ρ) for finite c. We begin by
providing two properties based on geometry of the environ-
ment. The proof follows directly from the geometry and has
been omitted for brevity (cf. [21] for a complete proof).

Lemma III.1 For a problem instance P(θ, ρ, r, v) with θ <
π
4 , all intruders can be captured if r ≥ ρ tan(θ) by position-

ing the vehicle at
(

ρ
cos(θ) , 0

)
.

We now characterize the minimum time required by the
vehicle to move from one end of the perimeter to the other.

Lemma III.2 The minimum time required by the vehicle to
move from a location such that the capture circle contains
one end of the perimeter, (ρ, θ), to a location such that the
capture circle contains the opposite end of the perimeter,
(ρ,−θ), is 2(ρ sin(θ)− r) if θ < π

2 and 2(ρ− r), otherwise.

We now present our first necessary condition on the
problem parameters for a finite c(P).

Theorem III.3 (Necessary condition for finite c(P)) For
any problem instance P(θ, r, ρ, v) with parameters satisfying

2(ρ sin(θ)− r) > 1− ρ
v

, if θ <
π

2
,

2(ρ− r) > 1− ρ
v

, if θ ≥ π

2
,

there does not exist a c-competitive algorithm for any con-
stant c and no algorithm, either online or offline, can capture
all intruders.

Proof: In this proof, we first construct an input instance
and then determine the number of intruders captured in that

(a) Vehicle is located at
(t1, α1) at time t1. Intruder b
is at (1,−θ).

(b) Vehicle is located at
(t2, α2). Intruder b is captured
but intruder a is lost.

Fig. 1: Description of the proof of Theorem III.4 for I3. The
red curve denotes the perimeter. The vehicle and the intruders are
denoted by a green triangle and a red dot, respectively.

input instance by any online algorithm A as well as the
optimal offline algorithm O.

For both online and optimal offline algorithms, assume that
the vehicle starts at the origin at time 0. The input instance
starts at time instant 1 with a stream of intruders, i.e., a
single intruder being released every 1−ρ

v time units apart,
at location (1, θ). If A never captures any stream intruders,
the stream never ends meaning the algorithm A will not be
c-competitive for any constant c ≥ 1, and the first result
follows as the optimal offline algorithm can move to (ρ, θ)
and capture all the stream intruders. We thus assume A does
capture at least one stream intruder, say the ith one, at time
t. The input instance ends with the release of a burst of
c + 1 intruders that arrive at location (1,−θ) at the same
time instant t.

We now identify how many intruders A can capture. First,
it cannot capture stream intruders 1 through i − 1 because
the stream intruders arrive 1−ρ

v time units apart meaning the
previous intruder reaches the perimeter and thus is lost just
as the next stream intruder arrives. We now show that the
vehicle cannot capture any of the c + 1 burst intruders. At
time t, the vehicle must be at most r distance away from the
ith stream intruder in order to capture it. Likewise, it has only
1−ρ
v time to move to capture the c + 1 burst intruders that

arrived at time t. From Lemma III.2 and our given conditions,
2(ρ sin(θ)−r) > 1−ρ

v (resp. 2(ρ−r) > 1−ρ
v) for θ < π

2 (resp.
θ ≥ π

2), the vehicle is ensured to lose the burst intruders.
On the other hand, the optimal offline algorithm O can

move the vehicle to location (x, α), as defined in Lemma
III.2, until the first i−1 intruders have been captured and then
move the vehicle to (x,−α) capturing the burst intruders,
losing only the ith intruder. This concludes the proof.

We now establish a necessary condition for the existence
of online algorithms having a competitive ratio of at least 2.
We first characterize locations (t1, α1) ∈ E(θ) and (t2, α2) ∈
E(θ) for the vehicle (Fig. 1), where

t1 =

√
1 + r2 − 2r(1−ρ cos(2θ))√

1+ρ2−2ρ cos(2θ)
,

α1 = tan−1
(

sin(θ)
√

1+ρ2−2ρ cos(2θ)−r(1+ρ) sin(θ)
cos(θ)

√
1+ρ2−2ρ cos(2θ)−r(1−ρ) cos(θ)

)
,

t2 =

√
ρ2 + r2 + 2rρ(cos(2θ)−ρ)√

1+ρ2−2ρ cos(2θ)
,

α2 = tan−1
(
−ρ sin(θ)

√
1+ρ2−2ρ cos(2θ)+r(1+ρ) sin(θ)

ρ cos(θ)
√

1+ρ2−2ρ cos(2θ)+r(1−ρ) cos(θ)

)
.

These locations are determined analogously to the proof of
Lemma III.2 and is omitted for brevity (see [21]).

Theorem III.4 (Necessary condition for c(P) ≥ 2) For
any problem instance P(θ, r, ρ, v), c(P) ≥ 2 if

1− ρ
v
≤
√

1 + ρ2 − 2ρ cos(2θ)− 2r, if θ ≤ π

2
1− ρ
v
≤ 1 + ρ− 2r, if θ >

π

2
.

Proof: The key idea is to construct input instances for
which any online algorithm is guaranteed to lose half the
number of intruders out of that instance, while proving that
an offline algorithm exists that can intercept all intruders. All
of our input instances consist of two intruders denoted by a
and b released at locations (1, θ) and (1,−θ), respectively,
and we assume that the vehicle starts at the origin. Two cases
arise; (i) θ ≤ π

2 and (ii) θ > π
2 .

Case (i): Suppose that 1−ρ
v =

√
1 + ρ2 − 2ρ cos(2θ)−2r.

Consider an input instance I1 in which both intruders a and b
are released at time instant t1. This is the time that the vehicle
takes to move from the origin directly to location (t1, α1).
We claim that the best way for any algorithm to capture
both intruders is to capture either intruder a or b exactly at
time t1, i.e., as soon as it arrives and then move to capture
the second intruder in minimum time. The explanation is as
follows.

The total time taken by the vehicle to capture
both the intruders in the worst case is 1−xi

v +√
x2i + ρ2 − 2xiρ cos(2θ) − 2r, where ρ ≤ xi ≤ 1 is the

radial component of the location of the first of the two
intruders at the time of capture. The expression of the total
time is determined through geometry and is omitted for
brevity (refer [21]). As 1−xi

v +
√
x2i + ρ2 − 2xiρ cos(2θ)−2r

is a monotonically decreasing function of xi, its minimum
is achieved at xi = 1. This establishes our claim that the
minimum time any algorithm can take is to capture one
intruder exactly when it arrives followed by the second
intruder at

√
1 + ρ2 − 2ρ cos(2θ)− 2r.

We now describe how an offline algorithm can capture
both the intruders in the input instance I1. At time 0,
the vehicle starts at the origin and moves towards location
(t1, α1) capturing the intruder at location (1, θ) exactly at
time t1. Then the vehicle moves directly to location (t2, α2),
exactly at time t1 +

√
1 + ρ2 − 2ρ cos(2θ) − 2r capturing

the second intruder at (ρ,−θ). Note that placing the vehicle
at (t1, α1) (resp. (t2, α2)) ensures that the location (1, θ)
(resp. (ρ,−θ)) is on the circumference of the capture circle
of the vehicle (Fig. 1). Thus, any algorithm that hopes to be
better than 2-competitive must capture both the intruders in
this input instance and the only way to do so is to move to
location (t1, α1) or (t1,−α1) arriving exactly at time t1.

Now consider input instances I2 and I3. In I2, intruder
a arrives at time t1 and intruder b arrives at time t1 + ε,
where ε < L = 2 sin(θ)

(
1− r(1+ρ)√

1+ρ2−2ρ cos(2θ)

)
and L

denotes the minimum time required by the vehicle to move
from (t2, α2) to (t2,−α2). In I3, intruder b arrives at time
t1 and intruder a arrives at time t1 + ε. Input instance I2
(resp I3) are constructed for algorithms that have the vehicle

arriving at location (t1,−α1) (resp. (t1, α1)) at time t1. Any
algorithm that has the vehicle arriving at location (t1,−α1)
(resp. (t1, α1)) at time t1 can capture only one intruder from
I2 (resp. (I3)). As the solution is symmetric, we only provide
the explanation for input instance I3. This follows as the
vehicle can capture intruder b if it moves directly to location
(t2, α2) (Fig. 1a). However, as intruder a arrives in at most
ε < L time units, the vehicle will not be able to capture
intruder a (Fig. 1b). An optimal offline algorithm can capture
both the intruders by simply moving to (t1,−α1) at time t1,
capturing intruder b upon arrival and then to (t2,−α2) to
capture intruder a.

For the case when 1−ρ
v <

√
1 + ρ2 − 2ρ cos(2θ) − 2r,

consider input instances I4 and I5. In I4, intruder a arrives
at time t1 and intruder b arrives at time t1 + ε, where ε =√
1 + ρ2 − 2ρ cos(2θ)−2r− 1−ρ

v . In I5, intruder b arrives at
time t1 and intruder a arrives at time t1+ε. Following similar
reasoning as for input instances I2 and I3, it follows that
no online algorithm can capture both intruders from input
instance I4 or I5.

Case (ii): θ > π
2 . Except for when θ = π, the vehicle must

move first to the origin and then to the next intercept point.
Note that, the vehicle will do the same when θ = π. Thus,
in this case, the location (t1, α1) is (1 − r, θ) and location
(t2, α2) is (ρ−r,−θ). Following similar steps as case (i), we
construct input instances I1, . . . , I5 (omitted for brevity) and
show that no online algorithm can capture both the intruders
from those input instances.

In summary, even restricting our input instance to
{I1, . . . , I5}, no online algorithm can capture both intruders
whereas an optimal offline algorithm can capture both the
intruders. This concludes the proof.

We now turn our attention to design of algorithms that
provide sufficient conditions on the competitive ratios.

IV. ALGORITHMS

We start by defining an angular path for the vehicle. Let
the vehicle be located at (x, α) ∈ E(θ) for any 0 < x ≤ 1
and α ∈ [−θ, θ]. An angular path is a circular arc centered
at the origin defined as T (x, β, β) := {(x, β) : β ≤ β ≤ β}
for any β, β ∈ [−θ, θ] such that β ≤ α ≤ β and β 6= β. We
say that the vehicle completes its motion on the angular path
when the vehicle returns to its starting location after moving
along all of the points in T twice. Once to move from the
starting location (x, α) to (x, β) (resp. (x, β)), and second,
to move from location (x, β) (resp. (x, β)) to location (x, β)

(resp. (x, β)) and then back to the starting location (x, α).

A. Angular Sweep algorithm

Angular Sweep is an open loop algorithm, described as
follows. The vehicle starts at location (xS , 0), where xS ∈
[ρ−r
1−aθv ,min{1− r, ρ+ r}], and a = 2 if θ = π and a = 4 if
θ 6= π. This choice for the location xS is justified in [21]. In
Angular Sweep, the vehicle moves on an angular path with
x = xS , β = −θ and β = θ for any θ < π. For θ = π,
the vehicle moves on a circle with xS as the radius and the
origin as the center.

We first define the angular sweep algorithm for θ 6= π. At
time 0, the vehicle first picks a velocity with unit magnitude

and direction tangent to the angular path, oriented to the
right until it reaches (xS , θ). Once it reaches the endpoint,
the vehicle switches direction and moves towards the other
endpoint, (xS ,−θ). From this moment on, the vehicle only
switches direction after it reaches an endpoint. In other
words, the vehicle moves on the angular path T (xs,−θ, θ),
moving towards (xS , θ) at time 0.

We now define the algorithm for θ = π. At time 0, the
vehicle picks a velocity with unit magnitude and direction
tangent to the angular path, oriented to the right. From this
point on, the vehicle keeps on moving in the same direction
for the entire duration, i.e., the vehicle moves on a circle of
radius xS and center as the origin.

Theorem IV.1 (Angular Sweep competitiveness) For any
problem instance P(r, ρ, θ, v) such that

v ≤ min
{ 2r

(ρ+ r)aθ
,

1− ρ
(1− r)aθ

}
, (1)

where a = 2 (if θ = π) or a = 4 (if θ 6= π), with the choice
of any xS ∈ [ρ−r

1−aθv ,min{1−r, ρ+r}], Angular Sweep is 1-
competitive. Otherwise, Angular Sweep is not c-competitive
for any constant c.

Proof: First, if equation (1) holds, then the interval
[ρ−r
1−aθv ,min{1 − r, ρ + r}] is non-empty and well defined.

Thus, it suffices to show that any xS from the said interval
guarantees that Angular Sweep captures every intruder.

Without loss of generality, we assume that, in the worst-
case, at time instant t, the vehicle has just left the location
(xS , θ) and intruder i is located at (xS + r, θ). The vehicle
takes a total of aθxS time units to return to the location
(xS , θ) whereas the intruder takes xS+r−ρ

v time units to reach
the perimeter. Thus, in order to ensure that the intruder i is
captured and takes time no less than xS+r−ρ

v , we require
aθxS ≤ (xS + r− ρ)/v and xS ≤ 1− r, respectively, which
holds given that xS ∈ [ρ−r

1−aθv ,min{1− r, ρ+ r}].
For any xS /∈ [ρ−r

1−aθv ,min{1−r, ρ+r}], we can construct
an input instance with stream of intruders always arriving at
(1, θ) such that when the vehicle leaves location (xS , θ), an
intruder is located at (xS+r, θ). Since xS /∈ [ρ−r

1−aθv ,min{1−
r, ρ+ r}], all intruders will be lost and the result follows.

B. Conical Compare and Capture
We now describe Conical Compare and Capture (ConCaC)

algorithm and establish that ConCaC is 2-competitive for
parameter regimes beyond those required for Angular Sweep.

An epoch k is defined as the time interval in which the
vehicle completes its motion on angular path with a specified
distance xC ∈ [ρ−r

1−2θv ,min{ρ+ r, 1−r
1+vθ}] which is fixed for

all epochs. The choice of xC is justified in [21]. ConCaC sets
the parameters β and β for the angular path at the start of
every epoch. Denote |Skright| (resp. |Skleft|) as the total number
of intruders in the set Skright (resp. Skleft) in epoch k, where

Skright(ρ, v) := {(y, β) : ρ+ βxCv < y ≤
min{1, xc + r + (2θ − β)vxC}∀β ∈ [0, θ]} and

Skleft(ρ, v) := {(y, β) : ρ− βxCv < y ≤ min{1, xc + r

+ (2θ + β)vxC}∀β ∈ (0,−θ]}.

Fig. 2: Setup for ConCaC algorithm for xC = r+ρ. All intruders
that are on the right (resp. left) side of the black dashed line and
between the blue curves are in the set Skright (resp. Skleft). Green
dashed curve denotes the angular path.

ConCaC algorithm is defined in Algorithm 1 and is
summarized as follows. At the start of every epoch k, the
vehicle compares the total number of intruders in the set Skleft
and Skright (Fig. 2). If |Skleft| < |Skright| (Line 4 in Algorithm
1), then the vehicle moves on the angular path T (xC , 0, θ)
until it reaches location (xC , θ) and then returns to (xC , 0),
moving on the same angular path. Otherwise (Line 8), the
vehicle moves on an angular path T (xC ,−θ, 0) towards the
location (xC ,−θ) and then returns to (xC , 0) moving on the
same angular path. The vehicle then repeats the same for the
next epoch.

For the initial case, we assume time 0 as the time when the
first intruder arrives in the environment. The vehicle starts at
location (xC , 0) and waits for 1−min{1, xC + r+2θvxC}
amount of time and then begins its first epoch.

Lemma IV.2 Any intruder that lies beyond2 the location
(xc + r + (2θ − β)vxC , β), ∀β ∈ [−θ, θ] in epoch k, will
either be contained in the set Sk+1

left or in Sk+1
right in epoch k+1

and is not lost at the start of epoch k + 1 if v ≤ xC+r−ρ
2θxC

.

Proof: [Sketch] Note that the region beyond (xc+ r+
(2θ − β)vxC , β), ∀β ∈ [−θ, θ] is the region between the
circumference of the environment and the sets Skleft and Skright
in any epoch k (region between the black solid line and
blue dashed curves in Fig. 2). To establish this result, we
determine the total time taken by the vehicle in an epoch
and the time taken by any intruder that was not contained
in the set Skleft and Skright in the worst case. The proof then
follows from the fact that the time taken by the vehicle must
be less than the time taken by the intruder considered.

Theorem IV.3 (ConCaC competitiveness) For any prob-
lem instance P(θ, r, ρ, v) such that

v ≤ min
{ r

θ(ρ+ r)
,

1− ρ
θ(2− 3r + ρ)

}
, (2)

with the choice of any xC ∈ [ρ−r
1−2θv ,min{ρ + r, 1−r

1+vθ}],
ConCaC algorithm is 2-competitive.

Proof: First, if equation (2) holds, then the interval
[ρ−r
1−2θv ,min{ 1−r

1+vθ , ρ+r}] is non-empty. Therefore, it suffices
to show that for any xC from the said interval, ConCaC
algorithm is 2-competitive. Lemma IV.2 ensures that every
intruder will belong to either set Skleft or Skright in every epoch
k. In every epoch k, the vehicle compares the total number of

2intruders with radial coordinate more than xc + r + (2θ − β)vxC

Algorithm 1: Conical Compare-and-Capture Algo-
rithm

1 Select xC ∈ [ρ−r
1−2θv ,min{ρ+ r, 1−r

1+vθ]}.
2 Wait until time 1−min{1, xC + r + 2θvxC}.
3 for each epoch k ≥ 1 do
4 if |Skleft| < |Skright| then
5 Set β = 0, β = θ
6 Move on angular path to location (xC , θ)
7 Move on angular path to return to (xC , 0)
8 else
9 Set β = −θ, β = 0

10 Move on angular path to location (xC ,−θ)
11 Move on angular path to return to (xC , 0)
12 end
13 end

Fig. 3: Breakdown of E(θ) into ns = 3 sectors and time intervals
of length D. The dashed green triangles denote the resting point of
each sector. Vehicle is located at (x3, α3) of sector N3.

intruders on either side contained in the set Skleft and Skright and
moves to the side where the number of intruders is higher.
Thus, the vehicle will capture at least half of the total number
of intruders that arrive in the environment, assuming that an
optimal offline algorithm captures all intruders.

C. Stay Near Perimeter (SNP) Algorithm

Unlike the previous two algorithms, in this algorithm, the
vehicle does not follow an angular path. Instead, the idea
is to partition the environment into sectors and position the
vehicle close to the perimeter in a specific sector.

We partition the environment E(θ) into ns = d θθs e sectors,
each with angle 2θs = 2arctan(rρ) (Fig. 3). Since r < ρ,
θs <

π
4 . Let Nl, l ∈ {1, . . . , ns} denote the lth sector, where

N1 corresponds to the leftmost sector in the environment.
Then, a resting point (xl, αl) ∈ E(θ) of a sector Nl is defined
as the location for the vehicle such that when positioned at
that location, the portion of the perimeter within that sector is
contained completely within the capture radius of the vehicle.
Mathematically, the resting point, (xl, αl), for a sector Nl is
defined as (ρ

cos(θ) , (l −
ns+1

2)2θs). Further, we define D as
the distance between the two resting points that are farthest
in the environment (Fig. 3) as

D =

{
2 ρ
cos(θs)

sin((ns − 1)θs), if (ns − 1)θs <
π
2

2 ρ
cos(θs)

, otherwise.
(3)

If there is only one sector, i.e., ns = 1 ⇒ D = 0 then this

implies the capture circle can contain the entire perimeter.
Thus, by positioning the vehicle at the unique corresponding
resting point, the vehicle can capture all intruders that arrive
in the environment.

After partitioning the environment into ns sectors, SNP
divides the environment into three annuli with width equal
to Dv each. This is equivalent to dividing time into intervals
of duration D each. Specifically, the jth time interval for any
j > 0 is defined as the time interval [(j − 1)D, jD] (Fig.
3). To ensure a finite competitiveness, we require 1−ρ

v ≥
3D, i.e., the intruders require at least 3D time to reach the
perimeter. For any j ≥ 1, let Sjl be the set of intruders that
arrive in a sector Nl in the jth interval (Fig. 3).

The SNP algorithm (defined in Algorithm 2) is based
on the following two steps: First, select a sector in the
environment with maximum number of intruders. Second,
determine if it is beneficial to switch over to that sector.
These two steps are achieved by two simple comparisons;
C1 and C2 detailed below.

In the first comparison C1 (Line 6 in Algorithm 2),
SNP determines the sector which has the most number of
intruders in the last two intervals as compared to the total
number of intruders in the entire sector in which the vehicle
is presently located. In particular, suppose that the vehicle
is located at the resting point of sector Ni at the j-th
iteration. Corresponding to any sector Nl, we define ηli as
|Sj+2
l | + |Sj+3

l | if l 6= i and |Sj+1
i | + |Sj+2

i | + |Sj+3
i |,

otherwise. Then, SNP selects the sector Nk∗ , where k∗ =
argmaxk∈{1,...,ns}{η

1
i , . . . , η

ns
i }. In case there are multiple

sectors with same number of intruders, then SNP breaks
the tie as follows. If the tie includes the sector Ni, then
SNP selects Ni. Otherwise, SNP selects the sector with the
maximum number of intruders in the interval j + 2. If this
results in another tie, then this second tie can be resolved
by selecting the sector with the least index. Let the sector
chosen as the outcome of C1 be No, o ∈ {1, . . . , ns}.

For the second comparison C2 (Line 7), if the sector
obtained from C1 is No with o 6= i, and the total number
of intruders in the set Sj+2

o is at least the total number of
intruders in Sj+1

i , then SNP moves (Line 8) the vehicle to
the resting point of sector No denoted by (xo, αo), arriving
there in at most D time units. Then the vehicle waits at that
(xo, αo) to capture all intruders in Sj+2

o . Otherwise (i.e., if
Sj+2
o < Sj+1

i or o = i), the vehicle stays (Line 10) at its
current location (xi, αi), captures intruders in Sj+1

i and then
reevaluates after D time units.

At time 0, the vehicle waits for D time units at location
(0, 0) after the first intruder arrives in the environment. Then
the vehicle moves to the sector which has the maximum
number of intruders in S1

i , ∀Ni sectors in the environment
(Line 2). The vehicle then waits until time 3D. To ensure that
no intruder is lost until time 3D, we require ρ

cos(θs)
≤ 2D.

Lemma IV.4 Let the vehicle be located at a resting point
(xi, αi) of a sector Ni, i ∈ {1, . . . , ns}. Then, for any j ≥ 1,
the vehicle always captures intruders in either Sj+1

i or Sj+2
o ,

where No denotes the sector selected by SNP after C1.

Proof: Consider that the sector No = Ni. Then,

Algorithm 2: Stay Near Perimeter (SNP) Algorithm
1 Stay at origin until time D.
2 k∗ = argmaxk∈{1,...,ns}{η

1
i , . . . , η

ns
i }, Ni = Nk∗

3 Move to (xi, αi) and wait until time 3D.
4 Assumes vehicle is at (xi, αi) in sector Ni
5 for each j ≥ 1 do
6 k∗ = argmaxk∈{1,...,ns}{η

1
i , . . . , η

ns
i },

No = Nk∗
7 if No 6= Ni and |Sj+2

o | ≥ |Sj+1
i | then

8 Move to (xo, αo) and then capture |Sj+2
o |

9 else
10 Stay at (xi, αi) and capture |Sj+1

i |
11 end
12 end

according to Algorithm 2, the vehicle stays at its current
position and captures Sj+1

i and the result follows.
Now consider that the sector No 6= Ni. Then there are

two cases: (i) Either the vehicle decides to stay at its current
position for D time interval, i.e., |Sj+1

i | > |Sj+2
o | or (ii) the

vehicle decides to move to the resting point corresponding to
the sector No, i.e., |Sj+1

i | ≤ |Sj+2
o |. In case (i), the vehicle

stays at its current location and captures |Sj+1
i |. In case (ii),

the vehicle spends at most D time units to moves to the
resting point of the sector No and then captures intruders in
the set Sj+2

o . This concludes the proof.
To establish the competitive ratio of Algorithm SNP, we

use an accounting analysis in which captured intervals pay
for the lost intervals or equivalently, captured intervals are
charged for the intervals lost. The following lemmas will
jointly establish the competitive ratio of SNP algorithm.

Lemma IV.5 In algorithm SNP, any two consecutive cap-
tured intervals pay for a total of 3(ns − 1) lost intervals.

Proof: As Lemma IV.4 ensures that the vehicle always
captures an interval of intruders, any two consecutive cap-
tured intervals can be classified into four types (see [21] for
images); (a) stay at the current location and capture both
intervals on the same side, (b) stay at the current location
and capture an interval and then move to the resting point
of No and capture the second interval, (c) move to the
resting point of No and capture both intervals, and finally
(d) move to the resting point of sector No and capture an
interval and then move to the resting point of another sector,
No′ , o

′ ∈ {1, . . . , ns} \ {o} and capture an interval.
The explanation for Type (a) captured intervals Sj+1

i and
Sj+2
i is as follows. At time instant jD and (j + 1)D, since

vehicle decides to capture Sj+1
i and Sj+2

i (comparison C1
and C2), it loses Sj+2

l and Sj+3
l intruders from other sectors,

i.e., ∀l ∈ {1, . . . , ns}\{i}. Thus the captured intervals Sj+1
i

and Sj+2
i are charged 2ns − 2 times. The remaining ns − 1

charge is explained as follows. Since the vehicle is currently
located at (xi, αi) it must be that the vehicle captured Sji .
This implies that comparison C1 must have yielded sector
Ni at either time instant (j−2)D (if the vehicle was located
at (xl, αl), l 6= i)) or (j − 1)D (if the vehicle was located

at (xi, αi)). Recall that C1 requires at least Sji and Sj+1
i

for the comparison. As the vehicle captured Sji , the captured
interval Sj+1

i is charged another ns − 1 times for both Sjl
and Sj+1

l combined for all l 6= i.
Following similar calculations, type (b) captured intervals

Sj+1
i and Sj+3

o are also charged 3(ns−1) times. ns−1 times
to pay for lost intervals Sjl and Sj+1

l combined and ns − 1
times for lost interval Sj+2

l , ∀l ∈ {1, . . . , ns} \ {i}. The
remaining ns−1 pay is as follows. Once for all lost intervals
Sj+2
i , Sj+3

i , and Sj+4
i combined and ns − 2 pay for lost

intervals Sj+3
l′ , and Sj+4

l′ combined ∀l′ ∈ {1, . . . , ns}\{i, o}
(comparison C1 and C2 at time (j + 1)D).

Type (c) captured intervals Sj+2
o and Sj+3

o pay once for
lost intervals Sj+1

i , Sj+2
i , and Sj+3

i combined as well as
ns − 2 times for the lost intervals Sj+2

l and Sj+3
l , ∀l ∈

{1, . . . , ns} \ {i, o} (comparison C1 and C2 at time jD).
The captured intervals also pay ns−1 times for lost intervals
Sj+4
l for all Nl, l 6= o sectors. Finally, the last ns− 1 pay is

for lost interval Sjl′ and Sj+1
l′ , ∀l′ ∈ {1, . . . , ns} \ {i} as the

vehicle captured Sj+2
o instead of Sj+1

i (comparison C1).
For type (d) captured intervals, without loss of generality,

consider that after capturing its first interval, Sj+2
o , in sector

No, the vehicle moves back to sector Ni to capture its second
interval Sj+4

i , i.e., No′ = Ni. Type (d) captured interval
Sj+2
o pays once for Sj+1

i , Sj+2
i , and Sj+3

i combined and
ns−2 times for the lost intervals Sj+2

l and Sj+3
l combined,

∀l ∈ {1, . . . , ns} \ {i, o} (comparison C1 and C2 at time j).
The captured interval Sj+4

i pays once for Sj+3
o , Sj+4

o , and
Sj+5
o combined and ns− 2 times for the lost intervals Sj+4

l

and Sj+5
l combined (comparison C1 and C2 at time j +2).

The final pay is ns− 1 times for lost intervals Sjl′ and Sj+1
l′

combined, ∀l′ ∈ {1, . . . , ns} \ {i} as the vehicle captured
Sj+2
o and instead of Sj+1

i (comparison C1).
Since each type of captured intervals are charged 3(ns−1)

times, the result is established.
We now establish that each lost interval is fully accounted

for by the captured intervals. Since SNP directs the vehicle
to stay at a resting point of any sector for some time interval,
it can be viewed as a sequence of traces, in which the
vehicle spends some number of intervals at one resting point
and some number of intervals at another. Each trace is thus
defined by a set {k1, k2, . . . , kns}, where each element kl,
l ∈ {1, . . . , ns} denotes the number of intervals that the
vehicle decides to capture by staying at the corresponding
resting point of the sector Nl.

Lemma IV.6 Each lost interval is accounted for by the
captured intervals of SNP algorithm.

Proof: Note that any realization of SNP can be achieved
by the combination of one or more traces as described in
the following cases. Case (i) ki = 3 and kl = 0 ∀l ∈
{1, . . . , ns}\{i}, Case (ii) 0 ≤ ki < 3 and ko = 2 and Case
(iii) ki = 0, ko = 1 and ko′ = 1,∀o ∈ {1, . . . , ns} \ {i} and
∀o′ ∈ {1, . . . , ns} \ {o}. The idea is to identify all of the
lost and captured intervals in each case and show that each
lost interval is accounted by the captured intervals.

Case (i): Due to comparison steps C1 and C2 at time jD,
the captured intervals Sj+1

i , Sj+2
i and Sj+3

i account for all

of the lost intervals Sj+2
l and Sj+3

l , ∀l ∈ {1, . . . , ns} \ {i}.
There are two sub-cases; sub-case (a) No = Ni at time
instant jD and sub-case (b), there exists a sector No 6= Ni at
time instant jD (comparison C1) such that |Sj+2

o | < |Sj+1
i |

(comparison C2). We first consider sub-case (a). Sub-case
(a) implies that at time instant jD, the total number of
intruders in sector Ni is more than in any other sector
in the environment. Thus, captured intervals Sj+1

i , Sj+2
i

and Sj+3
i account for all of the lost intervals Sj+2

l and
Sj+3
l , ∀l 6= i. In sub-case (b), we account for lost intervals
Sj+2
l , Sj+3

l , ∀l ∈ {1, . . . , ns} \ {i, o} and Sj+2
o , Sj+3

o ,
separately. Lost intervals Sj+2

l and Sj+3
l are accounted for

because |Sj+2
l | + |Sj+3

l | ≤ |Sj+1
i | + |Sj+2

i | + |Sj+3
i | or

equivalently ηli ≤ ηii (comparison C1). Now it remains to
account for lost intervals Sj+2

o and Sj+3
o . Observe that if

there exists a sector No 6= Ni at time instant jD such that
|Sj+2
o | < |Sj+1

i |, then there cannot exist the same No at
time instant (j + 1)D (from comparison C1). Thus, even if
No 6= Ni exists, then the lost interval Sj+2

o is accounted by
Sj+1
i as |Sj+2

o | < |Sj+1
i | (comparison C2). Since, at time

(j+1)D, sector No cannot be selected again, it follows that
ηoi < ηii at time (j + 1)D and thus, Sj+3

o is accounted for.
Case (ii): To account for the lost intervals Sj+kil and

Sj+1+ki
l ,∀l ∈ {1, . . . , ns} \ {i}, from comparison C1 and

C2 at time (j+ki)D, the vehicle was supposed to capture all
Sj−2+kii , Sj−1+kii , . . . , Sj+1+ki

i intervals. While the vehicle
captured Sj−2+kii , . . . , Sj+kii intervals, it did not capture
Sj+1+ki
i . As ηoi > ηli at time instant (j+ki)D, lost intervals
Sj+kil and Sj+1+ki

l ,∀l ∈ {1, . . . , ns} \ {i} are fully ac-
counted for. The remaining lost intervals Sj+1+ki

i , Sj+2+ki
i ,

Sj+3+ki
i Sj+2+ki

l , and Sj+3+ki
l ∀l ∈ {1, . . . , ns} \ {o}

are fully accounted by the captured intervals Sj+2+ki
o and

Sj+3+ki
o because the conditions ηoi > ηii and ηoi > ηli are

satisfied at time instant (j + ki)D (comparison C1).
Case (iii): To account for lost intervals Sj+1

i , Sj+2
i , Sj+3

i ,
Sj+2
l , and Sj+3

l ∀l ∈ {1, . . . , ns} \ {i, o}, the vehicle was
supposed to capture Sj+2

o and Sj+3
o . This follows because

at time instant jD, ηoi > ηii (comparison C1) and |Sj+2
o | ≥

|Sj+1
i | (comparison C2). The vehicle captured Sj+2

o which
accounts for Sj+1

i as |Sj+2
o | ≥ |Sj+1

i |. As the vehicle moved
to capture Sj+4

o′ at time (j + 2)D, it implies that |Sj+4
o′ | ≥

|Sj+3
o | (comparison C2) and thus, Sj+3

o , Sj+2
i , Sj+3

i , Sj+2
l ,

and Sj+3
l are all accounted by the captured interval |Sj+4

o′ |.
Finally, the lost intervals |Sj+4

l |,∀l ∈ {1, . . . , ns} \ {o′} are
accounted for as follows: If the vehicle also captures Sj+5

o′ ,
then lost intervals Sj+4

l are accounted for by per case (ii)
(ki = 1). Otherwise (i.e., the vehicle moved to another sector
Nõ, õ 6= o to capture Sj+6

õ), Sj+4
l is accounted for as per

case (iii) as now the lost intervals will be Sj+3
i , Sj+4

i , Sj+5
i ,

Sj+4
l , and Sj+5

l ∀l ∈ {1, . . . , ns} \ {i, o}.
Finally, note that the boundary cases of the first and the

last intervals fall into these cases by adding dummy intervals
S0
i ,∀i ∈ {1, . . . , ns} and SY+1

i , where Y denotes the last
interval that consists of intruders in any sector, each with
zero cardinality. We assume that the vehicle captures all of
the dummy intervals. This concludes the proof.

Fig. 4: Parameter regime plot in (ρ, v) space with r = 0.05, θ = π
3

.
Dashed lines extend to the right. Solid lines extend to the left.

Theorem IV.7 (SNP competitiveness) For any problem in-
stance P(θ, ρ, v, r) that satisfies 3D ≤ 1−ρ

v and 2
ρ cos(θs)

≤
2D, SNP is 3ns−1

2 -competitive, where ns = dθ/θse, θs =
arctan(r/ρ) and D is defined in (3).

Proof: From Lemma IV.5 and Lemma IV.6 it follows
that, for any given trace of SNP algorithm, every two
consecutively captured intervals pay for 3ns−3 lost intervals
and every lost interval is accounted by two consecutive cap-
tured intervals. Assuming that the optimal offline algorithm
captures all intruder intervals, i.e., 3ns−1, the claim follows.

V. NUMERICAL VISUALIZATION AND OBSERVATIONS

We now provide a numerical visualization of the analytic
bounds derived in this paper. Figure 4 shows the (ρ, v)
parameter regime plot for a fixed capture radius r = 0.05
and θ = π

3 . We have provided additional parameter regime
plots for different values of r and θ in [21].

Since the competitiveness of SNP depends on the number
of sectors, we observe that the parameter regime of SNP
is in regions, where each region corresponds to a specific
competitiveness. As the capture radius r increases or the
angle θ decreases, the number of regions decreases. An
important characteristic for SNP is that it can be used to
determine the tradeoff between the competitiveness and the
target parameter regime for the problem instance.

Figure 4 suggests that for small values of r, SNP has a
relatively large region of utility implying that the smaller the
capture radius, SNP can capture equally fast intruders, but
at the cost of higher competitive ratio. For r = 0.05, SNP is
2.5-competitive for ρ < 0.2. Interestingly, the curve for SNP
extends beyond that of Theorem III.4. We observe that for
high values of ρ, the curve defined by sufficient conditions
for SNP is completely below the curve defined by conditions
of ConCaC suggesting that SNP is ineffective for large ρ. A
similar observation is made for high values of r.

VI. CONCLUSION AND FUTURE DIRECTIONS

This work analyzed the problem wherein a single vehicle,
having a finite capture radius, is tasked to defend a perimeter
in a conical environment from arbitrary many intruders
that arrive in the environment in an arbitrary fashion. We

designed and analyzed three algorithms and established suf-
ficient conditions that guarantee a finite competitive ratio for
each algorithm. As there is a trade-off in covering a larger
parameter regime and achieving a smaller competitive ratio,
the choice of which algorithm to use depends on the problem
parameters and the acceptable bound on competitiveness. We
also derived two fundamental limits on achieving a finite
competitive ratio by any online algorithm.

Key future directions include a cooperative multi-vehicle
scenario with communication and energy constraints.

REFERENCES

[1] A. Von Moll, E. Garcia, D. Casbeer, M. Suresh, and S. C. Swar,
“Multiple-pursuer, single-evader border defense differential game,”
Journal of Aerospace Info. Systems, vol. 17, no. 8, pp. 407–416, 2020.

[2] D. G. Macharet, A. K. Chen, D. Shishika, G. J. Pappas, and V. Kumar,
“Adaptive partitioning for coordinated multi-agent perimeter defense,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 7971–7977.

[3] S. Bajaj and S. D. Bopardikar, “Dynamic boundary guarding against
radially incoming targets,” in 2019 IEEE 58th Conference on Decision
and Control (CDC), 2019, pp. 4804–4809.

[4] A. Von Moll, D. Shishika, Z. Fuchs, and M. Dorothy, “The turret-
runner-penetrator differential game,” in 2021 American Control Con-
ference (ACC). IEEE, 2021, pp. 3202–3209.

[5] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update
and paging rules,” Comm. of ACM, vol. 28, no. 2, pp. 202–208, 1985.

[6] H. N. Psaraftis, “Dynamic vehicle routing problems,” Vehicle routing:
Methods and studies, vol. 16, pp. 223–248, 1988.

[7] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic
vehicle routing for robotic systems,” Proceedings of the IEEE, vol. 99,
no. 9, pp. 1482–1504, 2011.

[8] S. L. Smith, S. D. Bopardikar, and F. Bullo, “A dynamic boundary
guarding problem with translating targets,” in Proceedings of the 48h
IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference, 2009, pp. 8543–8548.

[9] R. Isaacs, “Differential games. a mathematical theory with applications
to warfare and pursuit, control and optimization,” 1965.

[10] M. Chen, Z. Zhou, and C. J. Tomlin, “Multiplayer reach-avoid games
via pairwise outcomes,” IEEE Transactions on Automatic Control,
vol. 62, no. 3, pp. 1451–1457, 2016.

[11] E. Garcia, A. Von Moll, D. W. Casbeer, and M. Pachter, “Strategies
for defending a coastline against multiple attackers,” in 2019 IEEE
58th CDC. IEEE, 2019, pp. 7319–7324.

[12] A. Davydov, P. Rivera-Ortiz, and Y. Diaz-Mercado, “Pursuer coor-
dination in multi-player reach-avoid games through control barrier
functions,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 1910–
1915, 2020.

[13] K. Margellos and J. Lygeros, “Hamilton–Jacobi formulation for reach–
avoid differential games,” IEEE Transactions on Automatic Control,
vol. 56, no. 8, pp. 1849–1861, 2011.

[14] M. Chen, Z. Zhou, and C. J. Tomlin, “A path defense approach to the
multiplayer reach-avoid game,” in 53rd IEEE Conference on Decision
and Control. IEEE, 2014, pp. 2420–2426.

[15] R. Yan, X. Duan, Z. Shi, Y. Zhong, and F. Bullo, “Matching-
based capture strategies for 3d heterogeneous multiplayer reach-avoid
differential games,” Automatica, vol. 140, p. 110207, 2022.

[16] D. Shishika and V. Kumar, “Perimeter-defense game on arbitrary
convex shapes,” arXiv preprint, arXiv :1909.03989, 2019.

[17] S. Velhal, S. Sundaram, and N. Sundararajan, “A decentralized multi-
uav spatio-temporal multi-task allocation approach for perimeter de-
fense,” arXiv preprint, arXiv:2102.07381, 2021.

[18] Y. Lee and E. Bakolas, “Guarding a convex target set from an attacker
in Euclidean spaces,” IEEE Control Systems Letters, vol. 6, pp. 1706–
1711, 2021.

[19] R. Yan, X. Duan, Z. Shi, Y. Zhong, and F. Bullo, “Matching-based cap-
ture strategies for 3D heterogeneous multiplayer reach-avoid differen-
tial games,” 2019, online available at:https://arxiv.org/abs/1909.11881.

[20] S. Bajaj, E. Torng, and S. D. Bopardikar, “Competitive perimeter
defense on a line,” in 2021 American Control Conference (ACC), 2021,
pp. 3196–3201.

[21] S. Bajaj, E. Torng, S. D. Bopardikar, A. Von Moll, I. Weintraub,
E. Garcia, and D. W. Casbeer, “Competitive perimeter defense of con-
ical environments,” arXiv preprint arXiv:2110.04667v2, 2021, online
available at: https://arxiv.org/abs/2110.04667v2.

	I Introduction
	II Problem Description
	III Fundamental Limit for Finite c
	IV Algorithms
	IV-A Angular Sweep algorithm
	IV-B Conical Compare and Capture
	IV-C Stay Near Perimeter (SNP) Algorithm

	V Numerical Visualization and Observations
	VI Conclusion and Future Directions
	References

