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Abstract—The specific objective of this paper is to develop a tool
that calculates the optimal trajectory of the follower aircraft as it
completes a formation rejoin, and then maintains the formation
position, defined as a ring of points, until a fixed final time. The
tool is designed to produce optimal trajectories for a variety
of initial conditions and leader trajectories. Triple integrator
dynamics are used to model the follower aircraft in three di-
mensions. Control is applied directly to the rate of acceleration.
Both the follower’s and leader’s velocities and accelerations are
bounded, as dictated by the aircraft’s performance envelope.
Lastly, a path constraint is used to ensure the follower avoids
the leader’s jet wash region. This optimal control problem is
solved through numerical analysis using the direct orthogonal
collocation solver GPOPS-II. Two leader trajectories are inves-
tigated, including a descending spiral and continuous vertical
loops. Additionally, a study of the effect of various initial guesses
is performed. All trajectories displayed a direct capture of the
formation position, however changes in solver initial conditions
demonstrate various behaviors in how the follower maintains
the formation position. The developed tool has proven adequate
to support future research in crafting real-time controllers ca-
pable of determining near-optimal trajectories.
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1. INTRODUCTION
Autonomous formation control is a growing area of interest
for future Air Force operations. Autonomous aircraft are
increasingly used across the battle space to avoid putting
personnel at risk. Thus, the need for autonomous aircraft to
handle formation tasks normally requiring a pilot has grown.
One model for this interaction consists of a leader aircraft
who is accompanied by an autonomous follower aircraft.
The ability for the follower aircraft to autonomously rejoin
and maintain a designated formation position would free the
leader aircraft to focus on other duties, leading to increased
mission effectiveness. The leader aircraft often has primary
responsibility for interactions outside of the formation, so
having an autonomous wingman which can execute without
additional oversight from the lead aircraft in an efficient
manner would decrease the leader workload. The scenario
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investigated in this paper focused on the response of a wing-
man rejoining from an arbitrary starting location to a defined
formation position and maintaining that position until a fixed
final time. This same behavior could readily be applied to
the scenario of an autonomous aircraft attempting to rapidly
attain an attack position on an enemy aircraft, along with
many other combat and training applications.

Figure 1. Fighting Wing Position [1]

Extensive research in maintaining a desired formation posi-
tion, defined as a single location relative to a leader aircraft,
has been conducted in articles such as [2], [3], and [4].
The author of [5] presented a model predictive controller
which added the ability to arrive at a target waypoint with
a desired velocity vector orientation. To extend this concept
beyond single-point formation positions, further research was
conducted which crafted a control architecture allowing a
follower aircraft to rejoin to a ring of points defined relative
to a leader aircraft [6]. This ring of formation points was
inspired by the traditional formation position ”fighting wing”
as seen in Figure 1 referenced from [1]. Future research aims
to dictate a trajectory in real-time for which an autonomous
wingman would attain and maintain a formation position de-
fined in reference to a maneuvering leader while minimizing
a desired cost function. In order to attain an approximate
minimum in real-time may require the use of different control
laws depending on the initial states of the leader and follower
aircraft. Thus, a state space of boundaries could be defined to
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dictate when certain control laws would be optimal. Further,
future research aims to create a strategy which will optimally
select from these predefined control laws and implement them
in real-time. Since it is unlikely a fully optimal solution can
be attained in real-time for this problem, the control strategy
will aim to approximate an optimal trajectory. Therefore, the
ability to calculate the degree of the error of this approxi-
mation is needed. This paper specifically aimed to create a
validation tool that will determine the optimal path for future
comparison to the approximated trajectory generated by the
real-time control strategy.

One specific scenario was considered. The follower aircraft
being tasked to rejoin to a defined formation ring in min-
imum time, and then maintaining that formation position
with minimum deviation over a fixed time duration. During
this task, the leader aircraft maneuvered in all three axes,
similar to the behavior dictated by typical formation roles.
The leader’s maneuvers were determined a priori for these
simulations, and were treated as a given set of parameters
for each test case. To simulate the follower aircraft’s flight
envelope, constraints were applied to the magnitude of both
the follower’s velocity and acceleration. The leader aircraft
maintained its own constraints along the predetermined path.
Two cases were analyzed and evaluated to assess the tools
effectiveness at determining the optimal path. The analysis of
this problem is organized in the following sections: Section
2 details the problem formulation, Section 3 outlines the
solution methodology, Section 4 includes discussion of the
results, and Section 5 includes the conclusions and future
recommendations.

2. PROBLEM FORMULATION
Assumptions

To aid in the initial creation of the validation tool, a num-
ber of simplifying assumptions were used. The follower
aircraft was modeled with triple integrator dynamics, with
control applied as a three-dimensional jerk vector. This
model assumed perfect knowledge of the aerodynamic forces
and thrust interactions. Full knowledge of the leader’s path
was provided to the solver for both cases, including three-
dimensional position, velocity, acceleration, and jerk vectors
defined in the inertial reference frame. No exogenous inputs
were considered within the tool. Therefore, deterministic
knowledge of all the follower states was assumed, which in-
cluded three-dimensional position, velocity, and acceleration.

Both the leader and follower aircraft were modeled as point
masses about their center of gravity. For any images created
throughout this report, the velocity vector was used as a
reference to determine the pitch and the yaw of the aircraft.
However, without modeling the full Euler angles of the
aircraft the ability to determine the roll angle was limited.
To aid in graphics development, roll was visually estimated.

In formulating the optimal control problem, the existence
of an optimal solution was assumed. A scenario without
a solution could be easily crafted, such as the simple case
where a trailing follower cannot accelerate fast enough to
catch a higher performance leader aircraft in the two-minute
simulation time. This assumption was satisfied within this
study by choosing appropriate initial conditions and using
matching aircraft performance envelopes. This assumption
could easily be relaxed while still providing optimal solutions
in future work. Additionally, the test cases presented leader
trajectories such that the opportunity existed for an optimal

rejoin and formation position maintenance.

Lastly, the aircraft performance envelope was modeled with
a minimum velocity and acceleration to prevent aerodynamic
stall, a maximum velocity to limit maximum dynamic pres-
sure forces, and a maximum acceleration to limit maximum
structural forces.

Reference Frames

This problem required two primary reference frames: the
inertial reference frame and the leader reference frame. Both
are shown in Fig 2, reproduced from [6]. The inertial
reference frame was defined as a traditional north, east, down
right-handed coordinated system with an origin fixed to the
starting north and east location of the follower aircraft at zero
feet mean sea level (MSL). The body fixed reference frame of
interest was fixed to the center of gravity of the leader aircraft.
This leader reference frame was defined with a longitudinal x
axis for which positive extended out the nose of the aircraft,
and a lateral y axis with positive defined as pointing out the
right wing. The third axis of the leader frame was defined
by the cross product of the x and y axis, using the right-hand
rule to determine the sign. The rotation matrix between the
two reference frames was defined by the leader’s flight path
angle, γ, and the course angle χ. The applicable direction
cosine matrix to rotate a vector from the leader frame to the
inertial frame was given by the following equation referenced
in [7].

Ri
L =

[
cosχ − sinχ 0
sinχ cosχ 0

0 0 1

][
cos γ 0 sin γ

0 1 0
− sin γ 0 cos γ

]
(1)

Additionally, the rotation matrix in (1) satisfies the relations
(RL

i )−1 = [Ri
L]> = Ri

L and det(RL
i ) = 1. RL

i defines
the rotation from the inertial frame to the leader frame. A
superscript L on any vector denotes a vector defined in the
leader reference frame, while all other vectors are defined
in the inertial frame. The subscript l and f represent the
leader and follower vectors respectively. Lastly, the vector
pd represent the vector LF in the inertial frame as shown in
Figure 2. This formulation was chosen to match the research
in [6]. The follower and leader states and control jerk vector
are defined in relation to the inertial coordinate system as
follows:

pi = [pix , piy , piz ]>; LF = pd = pf − pl . . . . . . . . . . Position
vi = [vix , viy , viz ]> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Velocity
ai = [aix , aiy , aiz ]> . . . . . . . . . . . . . . . . . . . . . . . . . .Acceleration
ui = [ux, uy, uz]> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control

Mathematical Formulation

As stated previously, the goal of this validation tool is to
determine the optimal path for a follower aircraft to rejoin to
a formation position, defined by the set of points contained
on the formation ring in minimum time, and subsequently
maintain the formation position with least deviation until a
fixed final time. This problem was crafted into a two-phase
dynamic optimal control problem based on the GPOPS-II
standard problem formulation [8].

The cost function for phase 1 dictates a minimum time to
execute the initial rejoin from a predefined starting location
to a point contained on the formation ring. The Mayer
form of a minimum time cost function was used as the final
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Figure 2. The formation ring is defined in the leader frame as shown by the red circle, in trail of the leader. The
follower strives to rejoin by reaching the ring and then sustaining that position thereafter. [6]

time of phase 1. The follower’s dynamics were modeled by
three-dimensional triple integrator dynamics, with the three-
element control applied directly to the follower’s jerk vector.
The scenario begins at time zero with a known initial state of
both the leader and follower. A path constraint was enforced
to prevent the follower from entering the leader’s jet wash,
a safety hazard to the follower aircraft. The jet wash was
modeled as an infinite cylinder centered about the xL-axis
centered at (yL, zL) = (0, 0) with a radius of Rjw. Note
that t(i)f indicates the final time of phase i. Thus, phase
1 included the terminal condition requiring the follower to
attain a formation position at t(1)f which was enforced by the
functions:

f1(pd) = (pdx − [Ri
Lc

L]x)
2

f2(pd) = (pdy − [Ri
Lc

L]y)
2 + (pdz − [Ri

Lc
L]z)

2 −R2
ring

(2)

The equations in (2) provided a way to characterize the
distance from the follower aircraft to the formation ring.
f1(pd(t

(1)
f )) ensured the follower aircraft attained the same

xL-coordinate in the leader reference frame as the tip of the
vector cL, which was used to define the center point of the
formation ring. f2(pd(t

(1)
f )) was used to ensure that the yL

and zL coordinates of the follower in relation to the leader
were at a distance from the ring center equal to the radius of
the ring. Simply put, when f1 = f2 = 0 the follower was
established in a valid formation position defined by the ring
of points of radiusRring with center defined by the vector cL.
In order to permit small numerical errors, a tolerance of ±10
meters was allowed as the maximum value of each function
at the terminal condition. Lastly, constraints were enforced
on the magnitude of the follower’s velocity and acceleration
vectors for the duration of the phase. The magnitude of the
follower’s velocity vector was constrained by a minimum and
maximum velocity, as dictated by the aircraft’s stall speed and
maximum speed. The magnitude of the acceleration vector
was constrained by a minimum acceleration to avoid zero g
flight, and a maximum acceleration to prevent overloading
the aircraft structure. Both of these constraints were enforced

as path constraints throughout the duration of the phase.

Minimizing the cost function of phase 2 required the follower
aircraft to minimize the deviation from the formation ring for
the duration of the phase. This deviation was characterized
by squaring and summing f1 and f2 as defined during phase
1, and integrating the resulting values over the duration of
the phase. Phase 2 used the same follower dynamics along
with the same path, state, and control constraints. The second
phase also contained the requirement for the position and
velocity to match across phases with a tolerance of ±0.1
m, ensuring a continuous trajectory throughout the entire
scenario. Additionally, the condition for the free final time
of phase 1 to match the initial time of phase 2 was enforced.
The final time of phase 2 was fixed, and was chosen to ensure
that the follower could attain the formation ring during phase
1 before the fixed final time of phase 2.

Since the optimization software required one cost function for
the overall problem, the cost functions from both phase 1 and
phase 2 were summed to produce a cumulative cost function.
In order to account for a difference in the magnitudes between
the cost functions of each phase, a weighting parameter β was
included in the summation.

A summary of the problem’s mathematical formulation is
presented on the following page.

Discrete Hamiltonian Derivation

A derivation of the discrete Hamiltonian is provided and was
used to ensure the validity of the optimal solution. The
continuous Hamiltonian was defined as H = L + λ̄TF. The
Lagrangian of the cost function was defined as L= (1 −
β){f21 + f22 }. λ̄ contained a column vector of the 9 costates.
Finally, F was a column vector of the right-hand side of the
9 dynamics equations. Since the tool produces a solution at
discrete points in time, the discrete form of the Hamiltonian
equation was used, defined as Hd = Lk + λ̄T

kFk. Here the
subscript k denotes the value of each function at the point
tk. For a problem in which the Hamiltonian is not an explicit
function of time, the value of the Hamiltonian will be constant

3



Overall: min
u(t)

J = βJ1 + (1− β)J2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cost Function

Phase 1: min
u(t)

J1 = t
(1)
f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cost Function

S.T. ṗf = vf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamics
v̇f = af . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamics
ȧf = u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamics
t0 = 0, pf (t0) = pf0 , vf (t0) = vf0 , af (t0) = af0 . . . . . . . . . . . . . . . . . . Boundary Condition
−εform ≤ f1(pd(t

(1)
f )) = (pdx

(t
(1)
f )− [Ri

L(γ, χ)cL]x)2 ≤ εform . . . . Terminal Condition
−εform ≤ f2(pd(t

(1)
f )) = (pdy

(t
(1)
f )− [Ri

L(γ, χ)cL]y)2

+(pdz
(t

(1)
f )− [Ri

L(γ, χ)cL]z)2 −R2
ring ≤ εform . . . . . . . Terminal Condition

−([RL
i (γ, χ)pd]y)2 − ([RL

i (γ, χ)pd]z)2 +R2
jw ≤ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . Jet Wash

vfmin
≤ |vf | ≤ vfmax

, afmin
≤ |af | ≤ afmax

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Constraints

Phase 2: min
u(t)

J2 =

t
(2)
f∫

t
(2)
0

{f1(pd(t))2 + f2(pd(t))2}dt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cost Function

S.T. ṗf = vf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamics
v̇f = af . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamics
ȧf = u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamics
t
(2)
f = 120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boundary Condition
t
(2)
o = t

(1)
f , pf (t

(2)
0 ) = pf (t

(1)
f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Phase Continuity

vf (t
(2)
0 ) = vf (t

(1)
f ), af (t

(2)
0 ) = af (t

(1)
f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Phase Continuity

−([RL
i (γ, χ)pd]y)2 − ([RL

i (γ, χ)pd]z)2 +R2
jw ≤ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . Jet Wash

vfmin
≤ |vf | ≤ vfmax

, afmin
≤ |af | ≤ afmax

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Constraints

Table 1. Initial Conditions

pf0 =

 0 ft
0 ft

20, 000 ft

 vf0 =

450 kts
0 kts
0 kts

 af0 =

0.07 g
0 g
1 g

 cL =

−700ft

0

0


Rring = 700 ft Rjw=5 ft β = 0.9 εform = 10 m

Vmin = 200 kts Vmax = 700 kts Amin = 0.25 g Amax = 7 g

on an extremal path [9]. This criterion is applicable to both
phase 1 and phase 2.

Test Cases

A summary of the initial conditions and parameters is pre-
sented in Table 1. Both aircraft were modeled as a typical 7g
capable fighter aircraft. The formation ring center was set at
700 ft directly behind the leader aircraft. The radius of the
formation ring was set to 700 ft. This placed the formation
ring points approximately 1,000 ft from the leader aircraft on
a 45-degree aspect, directly correlating to the fighting wing
position discussed previously. The jet wash cylinder was
set 5 feet wide. The follower aircraft was initialized in 1
NM trail of the leader aircraft, with a 1,000 ft lateral offset
to the leader’s right wing. The simulation was run for 2
minutes. The velocity was limited to a minimum of 200 knots
to prevent stall, and a maximum of 700 knots. The maximum
acceleration was limited to 7 g’s, with a minimum of 0.25 g’s.

In order to assess the capabilities of the validation tool, two
test cases were evaluated. Both aircraft began on a north
heading in level flight at 450 knots and 20,000 ft MSL. The
first leader trajectory consisted of a constant left bank, de-
scending spiral. The leader descended with constant airspeed
at approximately 3.25 degrees of pitch losing 6,500 ft over the
2-minute simulation. The second case used the same initial
conditions followed by the leader performing a number of
continuous loops. The loops were approximately 12,000 ft
tall starting and ending at the initial altitude. The loops were
executed on a constant heading. Again, a 2-minute simulation
time was used. Due to the minimum time formulation of the
problem, the optimal solution was expected to take a direct
path to the formation ring, with allowances for maintaining
the ring position throughout phase 2.
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3. SOLUTION METHODOLOGY
Direct Collocation Solver

This problem was solved with the direct orthogonal colloca-
tion solver GPOPS-II discussed in [8]. GPOPS-II uses a poly-
nomial approximation of the state and control vectors. The
solver transcribed the continuous optimal control problem by
interpolating these approximations at LGR based collocation
points as discussed in [10]. Gaussian quadrature was used to
approximate the cost function, and a differential matrix based
on the Lagrange polynomial basis allowed the dynamics to be
enforced exactly at each collocation point. Additionally, the
boundary and path constraints were enforced at each colloca-
tion point. GPOPS-II then formatted the problem for hand-off
to a nonlinear program (NLP) solver. The NLP solver used
both the gradient and Hessian of the transcribed problem.
These functions were computed using the MATLAB program
ADiGator discussed in [11].

Scaling was used to aid in solver convergence, which simply
consisted of normalizing to 100s of meters of distance. The
NLP solver requires bounds to constrain the feasible region
for all variables. The position state was bounded to the
max distance the follower aircraft could travel straight along
the coordinate direction at maximum velocity over the two-
minute simulation time. The velocity and acceleration com-
ponents were bounded by ±Vmax and ±Amax respectively.
An acceleration rate limit of ±5 g/s was used to bound
the control components. Unless specified elsewhere, default
settings were used as provided with GPOPS-II.

Once the first solution was returned from the NLP solver, the
error in the enforcement of the dynamics at the midpoints
between collocation points was estimated by GPOPS-II. The
maximum magnitude of this error was used as the termination
criteria for the algorithm, with a tolerance of 10−3. If the
error exceeded the tolerance, GPOPS-II modified the mesh of
each phase, and the number of collocation points included on
each mesh interval. The hp-LiuRao adaptive mesh refinement
method provided with GPOPS-II was used. This process
was then repeated until the mesh tolerance was satisfied.
GPOPS-II reported the final solution with values of the states,
controls, and costate estimates at each collocation point and
one interpolated point at the end of each of the two phases.

NLP Solver

The NLP Solver IPOPT was used as provided with GPOPS-
II. IPOPT used an interior point boundary value method
which was described in [12]. A tolerance of 10−5 was
used for the determination of convergence within IPOPT. The
linear solver MA57 was used by IPOPT to solve the system
of equations on each NLP iteration.

Initial Guess Generation

GPOPS-II required an initial guess for the states and controls
over the duration of the problem. In order to align with future
work, the initial guess of the follower’s states and controls
were generated from a control strategy algorithm. This
algorithm was currently under development with the intent
of creating the ability to approximate the optimal trajectory
in real-time. Details of this algorithm will be documented in

Figure 3. Initial Guess Provided by Algorithm

5



a future publication. The algorithm used a control strategy
which selected from simple maneuver primitives based on
various decision criteria informed by the relation between
the leader and follower aircraft at a given instance in time.
While this algorithm is still under development, it has a basic
capability such that the follower aircraft can track to a single
point defined in reference to the leader aircraft.

Using this basic capability, the algorithm was run such that
the follower tracked to and maintained a point that would
coincide with a single point located on the formation ring.
This algorithm did not allow for the tracking of a set of points
at the time of this writing, as the validation tool does. For both
cases the initial guess was generated by having the follower
aircraft attempt to track to the point that is longitudinally in
line with the projection of the right-wing tip of the leader.
While this algorithm was still under development, it provided
a sufficient initial guess such that the optimal control solver
was able to converge to an optimal trajectory in all cases.

In order to assess the impact various initial guesses may have
had on the convergence of the optimal control solver, the
spiral case was evaluated with 4 different algorithm results.
The algorithm was set to track to 4 various points along
the formation ring. The four points were located along the
projection of the left wing, along the projection of the right
wing, and at the top and bottom of the ring when referencing
the zL axis. The algorithm results were then evaluated on
their time to rejoin to the formation ring and the magnitude
of the final cost function for comparison. An example of an
initial guess for the spiral trajectory can be seen in figure 3.

4. RESULTS
Spiral Trajectory

For the descending spiral trajectory, GPOPS-II reported an
optimal solution for which the states and controls are depicted

in Figures 4, 5, 6, and 7. The position response showed the
follower aircraft in black, the leader aircraft in blue, and a
maroon diamond represented the point in the trajectory when
the phase transition occurs. As expected, the follower took
a direct path to the formation ring during phase 1, while
maintaining the formation ring nearly perfectly throughout
the duration of phase 2. It should be noted that some motion
along the formation ring was observed throughout phase 2,
but as this incurs no penalty within the cost function this
does not preclude this path from being optimal. The velocity
and acceleration response showed the aircraft attempting to
achieve a maximum velocity in order to minimize the rejoin
time. The limits on the jerk control vector could also be
seen by the linear changes in the acceleration components.
The optimal control is very noisy during phase 1. However,
this was the main reason to use triple integrator dynamics as
this noise simply represents a g onset rate which wouldn’t be
prohibitively difficult to implement on a real aircraft.

The path constraints imposed on the magnitudes of velocity
and acceleration can be seen in Figures 8 and 9. These
plots showed the follower aircraft achieving its maximum
velocity at the maximum acceleration rate throughout phase
1, reducing the rejoin time to the greatest extent possible.
The rejoin time reduction was further enabled by the ability
of the follower to maneuvering along the formation ring and
dissipate excess energy during phase 2 with no additional cost
penalty. This reduction in rejoin time would not have been
possible if the formation position was represented by a single
point as the follower would have to arrive at that point with
its velocity already matched to the leader’s velocity in order
to minimize deviation during phase 2.

Figure 4. Position Response for Case 1
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Figure 5. Velocity Response for Case 1

Figure 6. Acceleration Response for Case 1

Figure 7. Optimal Control for Case 1

Figure 8. Magnitude of Velocity for Case 1

Figure 9. Magnitude of Acceleration for Case 1

Figure 10. Deviation from Formation Ring in Case 1

The final plot seen in figure 10 for case 1 shows the progres-
sion of the ring deviation functions throughout the simulation.

7



As expected, the follower rapidly reduced the distance to zero
during phase 1, and maintained a zero deviation throughout
phase 2 even as the leader continued to maneuver.

Loop Trajectory

For the leader trajectory consisting of continuous vertical
loops, the optimal path can be seen in Fig 11. This leader tra-
jectory was chosen for study due to its significant differences
from the descending spiral. The leader trajectory contained
significant vertical deviations along with large changes in the
leader’s velocity. However, similar behavior of the optimal
trajectory was seen across the two cases. During phase 1, the
follower again accelerated at the maximum rate to maximum
velocity in a direct path to the formation ring. The follower
was then able to maintain the ring with little deviation for the
duration of phase 2.

Figures 12-16 show the other state responses for the fol-
lower’s trajectory. The maximum velocity attained during
phase 1 can be clearly seen, and the large variations in the ver-
tical direction match with the loop maneuvers of the leader.
Acceleration rate limiting was also observed in the same
fashion as the spiral trajectory. The follower still maneuvered
along the formation ring during phase 2 while dissipating
excess energy from the rejoin, but with little deviation, as can
be seen in Figure 17.

Initial Guess Comparison

The second phase of this problem allows for motion along
the formation ring without penalty. Thus, more than one
path could be considered equally optimal during the second
phase. A study of this behavior was conducted by varying
the initial guess given to GPOPS-II. Figure 18 shows the
resulting trajectories that were reported as optimal by the

Table 2. Initial Guess Cost Comparison

Left Wing Right Wing Top Bottom

t
(1)
f 15.2319 s 15.2320 s 15.2422 s 15.2362 s

J 16.1472 16.1471 16.1221 16.1221

software for the 4 tested initial conditions. As predicted,
the trajectories were nearly identical during phase one as
they took a direct path to minimize the time of the rejoin.
During the later portion of phase 2 the trajectories all settled
to stable locations along the ring with only small deviations
observed between the paths. However, when the follower
was dissipating excess energy carried from the first phase, the
paths diverged.

Table 2 shows the final times of phase 1 and overall cost
function values for each initial condition. It is notable that
the cost functions are nearly identical even with the path
deviations that occurred at the beginning of phase 2. While
the various initial conditions caused the solver to converge to
somewhat different phase 2 paths, the solver still converged to
paths that were equally optimal in regards to the cost function
that was studied. This result brings interest to future studies
which could include further penalties in the cost function such
as limiting control usage or energy expenditure. Figure 19
shows the similarity in the velocity profiles between each
initial condition. This figure uses the same color scheme as
Figure 18. Similar results were also seen for the other states
and the control vector.

Figure 11. Position Response for Case 2
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Figure 12. Velocity Response for Case 2

Figure 13. Acceleration Response for Case 2

Figure 14. Optimal Control for Case 2

Figure 15. Magnitude of Velocity for Case 2

Figure 16. Magnitude of Acceleration for Case 2

Figure 17. Deviation from Formation Ring in Case 2
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Figure 18. Initial Condition Trajectory Comparisons

Figure 19. Initial Condition Velocity Comparisons

In all cases the tool produced feasible trajectories with no
violation of the path constraints. This was observed for the
jet wash constraint by noting that the value of the constraint
never took on a positive value. However, the maximum value
of the jet wash constraint,−8.54×10−5, occurred during the
spiral trajectory with the goal position at the top of the ring
So, the optimal trajectory did closely approach the jet wash
cylinder, but never violated the path constraint.

Analysis of Optimally

The discrete Hamiltonian is presented for both leader trajec-
tories in Figure 20. As previously discussed, the Hamiltonian
should be constant during phase 1 and 2. Both figures
show that using the costate estimates provided by GPOPS-
II did yield Hamiltonians which were consistent with these
conditions. There was some variation near the phase switch
likely caused by numerical error. However, the magnitude of
this error was not observed to have significantly affected the
validity of the solutions.

Figure 20. Discrete Hamiltonian

These results demonstrate the initial ability of the tool to pro-
duce optimal trajectories for a variety of complex trajectories.

5. CONCLUSIONS
This paper demonstrated the initial capability of a validation
tool which can find the optimal path for a follower aircraft
to rejoin to a set of dynamic formation points in minimum
time and maintain that position for a given leader trajec-
tory. Of note was the ability of the follower to use the
increased flexibility of the formation ring to decrease the
rejoin time during the first phase with no penalty during the
second phase of the trajectory. It allows for a follower to
maintain maximum flexibility while maintaining formation
position. This in turn allows the leader aircraft freedom to
perform aggressive maneuvering if required. Additionally,
the solver showed consistent behavior for two drastically
different leader trajectories. The optimal trajectory worked
to quickly rejoin to the formation ring, and maintained the
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ring with nearly zero deviation during phase 2, regardless of
the leader maneuvering laterally or vertically. Additionally,
the validity of the solutions was shown through the consistent
behavior of the discrete Hamiltonian. This tool should prove
useful in future research for finding the optimal path to
evaluate the accuracy of a control strategy.

Creating this validation tool uncovered a number of lessons
learned for future use. The tool produced a noisy control re-
sponse, which necessitated the use of triple integrator dynam-
ics to yield realistic acceleration and velocity vectors. While
choosing different initial conditions did produce somewhat
different optimal trajectories, they did not differ significantly
in their rejoin time or total amount of deviation from the
formation ring. This result demonstrated that there was a
family of optimal solutions which were all approximately
equal in value for the given cost function. Future research
could consider adding additional cost parameters to penalize
things such as excess control effort or energy expenditure.

A number of areas are planned for future research. The
first area was planned to test additional leader trajectories to
continue building trust in the tool’s ability to generate optimal
trajectories. A more complicated dynamics model will be in-
corporated for the follower’s dynamics, incorporating aircraft
aerodynamics. Different formation shapes can be defined by
modifying the cost functions accordingly. However, the next
major area of research will consist of determining control
laws and strategies which can approximate these optimal
trajectories, but can be computed at a speed which will allow
for real-time implementation.
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