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Abstract— In this paper, we consider a trajectory planning
problem where an autonomous vehicle aims to rendezvous with
another cooperating vehicle in minimum time. The first vehicle
has kinematic constraints, consequently feasible trajectories
must have a maximum curvature less than a specified limit.
Rendezvous is said to occur at the instant that the two vehicles
are collocated with the same heading. We propose a technique
to construct a trajectory, composed of piecewise quadratic
Bézier curves, that satisfies the vehicle motion constraints and
achieves rendezvous in minimum time. The methodology begins
by finding safe flight corridors, which are constructed from
sequences of triangles using constrained Delaunay triangulation
of the feasible space; the triangles define the bounds of Bézier
curves. We formulate the necessary constraints for continuity
and feasibility as functions of the control points that define
the Bézier curves, and the resulting optimization problem is
solved using a nonlinear programming solver. The techniques
developed were tested using simulated scenarios, and we present
the results which highlight the efficacy of the proposed solution
approach. Furthermore, the algorithm was implemented and
tested in a field test and those results are presented.

Index Terms— path planning, obstacle avoidance, mobile
robots, kinematic constraints

I. INTRODUCTION

Trajectory generation in the presence of obstacles for
non-holonomic vehicles is an important research topic with
several applications in autonomous mobility. The general
objective is to determine the trajectory by which a mobile
robot departs some initial state, arrives at a desired final state,
and minimizes a given cost. In this paper, an autonomous air-
vehicle with kinematic constraints aims to rendezvous with
a second vehicle in minimum time amid a field of static
obstacles. Such rendezvous requirements are necessary in
applications where multiple vehicles cooperatively perform
data gathering missions, and where two vehicles need to
exchange data. The kinematic constraints of the vehicle are
due to the minimum turn radius, and therefore the trajectories
should satisfy the maximum curvature constraints to be
flyable. The two vehicles are cooperating and the planned
trajectory of the second vehicle is known to the first vehicle.
The rendezvous is defined as two vehicles arriving at a
location at the same time with the same heading. In practice,
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these two vehicles would fly at different altitudes, and a
feasible rendezvous only requires the x, y coordinates and
heading to be the same. The proposed solution approach
is for the controlled vehicle to generate a trajectory using
a concatenated set of quadratic Bézier curves (QBC). We
assume the vehicles are traveling at constant speed and the
objective to rendezvous in minimum time is addressed by
optimizing the length of the trajectory. The trajectories are
defined by a set of control points, and the constraints and
objective are realized as functions of these control points.
We formulate this as a nonlinear program with the sets of
control points as decision variables, the solution of which
gives a trajectory that avoids the obstacles and ensures a
smooth path which does not exceed the maximum curvature
limit.

Dubins paths [1], [2] are very popular for path planning
for vehicles with kinematic constraints in obstacle free
environments. Sample based path planning methods, such as
RRT [3]–[5], were developed to generate feasible paths in
structures environments, and recent advances are proven to
be probabilistically complete. Discrete search based methods
such as hybrid A∗ [6] produce quick solutions and are
thus viable for online planning. However, these methods
are not suitable for the trajectory planning problems with
temporal or length constraints. In our previous work [7],
we proposed a Dubins based planning to address temporal
constraints such as rendezvous problem. Dubins paths are
highly discontinuous, and making fine adjustments requires
careful attention to the discontinuities in the path length as
a function of the path modality [8]. Such methods are not
viable for environments with obstacles.

Recently, trajectory generation using splines such as
Bézier curves [9]–[13] have gained traction due to their
flexibility. In [9], quartic Bézier curves, defined by Bernstein
polynomials of degree four, are considered and trajectory
generation is posed as a nonlinear program. To address the
kinematic constraints, the maximum curvature is computed
using a numerical root finding method in each iteration of
the nonlinear program. Bézier curves of degree five are
used to approximate a clothoids in [11]. In [12], a flight
corridor is generated and trajectories are generated using
piecewise Bézier curves, where the position and dynamics
are bounded using Bézier properties. A similar method
with piecewise Bézier curves was used in [13], where the
trajectory generation is decoupled into timing variables and
path variables. The curvature constraints on the paths due
to the kinematics of the vehicles are not addressed in [12],
[13].



In this paper, we propose a method to construct a trajectory
using piecewise QBCs. The use of QBCs is motivated by the
fact that there exists a closed form solution to compute the
maximum curvature [14] and the length of a QBC. These
enable us to explicitly formulate a nonlinear program that can
address the maximum curvature constraints and the length
constraints on the path to achieve the rendezvous. To deal
with obstacle avoidance, we follow [12], [15] and generate a
safe flight corridor using constrained Delaunay triangulation
(CDT). Using CDT, Kallmann provided an efficient means
of computing optimal paths of arbitrary clearance [16].
The technique proposed in this paper involves generating
flight corridors as a series of triangles, defining a QBC
corresponding to each triangle in the flight corridor, and the
obstacle avoidance is addressed by bounding each QBC to
lie within the corresponding triangle. Each QBC is a function
of its control points, and the nonlinear program minimizes
a cost function by simultaneously solving for the control
points of all the QBCs. We formulate the constraints of
this optimization to satisfy the path continuity, maximum
curvature and the constraints on the path length to achieve
rendezvous using these control points.

The paper is constructed as follows: In Section II, the
rendezvous problem is described in detail. Next, in Sec-
tion III, the corridor construction and computation of the
trajectory as a series of quadratic Bézier curves is described.
In Section IV, an example simulation with experimental
results shows the efficacy of the proposed approach for
rendezvousing trajectory planning in minimum time. Finally,
in Section V, a summary of the paper and concluding
remarks are made.

II. RENDEZVOUS PROBLEM

We assume the obstacles in the environment are known
a priori and can be reasonable modeled by polygons. The
initial configuration of the autonomous air-vehicle (AV1) is
given (sx, sy, sθ), where (sx, sy) are the position coordi-
nates, and sθ is the heading measured with respect to a pre-
defined x-axis. The air-vehicle AV1 is required to rendezvous
in some predefined ‘feasible-space‘ with a second, moving
air-vehicle AV2. In this paper, the feasible space is a line-
segment that does not intersect with any of the obstacles. Let
Ts and Tf represent the ends of this line segment, and AV2
starts at Ts and travels at constant speed and heading towards
the Tf , let this heading direction be tθ. Let ts be the time of
arrival of the AV2 at Ts. The autonomous air-vehicle, AV1,
has kinematic constraints, and for the trajectory generated to
be flyable, the curvature at any point on the path must be
less than the maximum curvature limit, κlimit.

The path planning problem is to find the rendezvous point,
Rt, on the line segment TsTf and the path of minimum
length that satisfies the following: (i) The path starts at
(sx, sy) with heading sθ and ends at Rt with a heading tθ.
(ii) AV1 and AV2 arrive at Rt simultaneously. (iii) The
maximum curvature of the path is less then κlimit. (iv) The
path is feasible with respect to the obstacles. An illustration
of the problem scenario is shown in Figure 1.
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Fig. 1. The problem scenario shows the starting position of AV1, the
rendezvous line segment TsTf and the obstacles.

III. TECHNICAL APPROACH

In this section, we focus on the path generation that
involves a corridor generation and path optimization posed as
nonlinear optimization problem. We propose a technique to
generate paths using a set of concatenated piecewise QBCs,
such that the tangent to the path is continuous everywhere,
G1. This path generation is guided by a predetermined flight
corridor, which is a series of triangles where every pair of
successive triangles have a common edge. In the following
subsections, we present brief overview of QBCs, corridor
generation, and path optimization formulated as a nonlinear
optimization problem.

A. Quadratic Bézier Curves (QBCs)

Bézier curves are splines that are defined by polynomials
over a finite interval in the Bernstein basis. The maximum
degree of the polynomials is referred to as the degree of the
Bézier curve. Let P (τ) be a Bézier curve of degree n, and
it is given as:

P (τ) =

n∑
k=0

pkb
n
k (τ), (1)

where τ ∈ [0, 1] is a non-dimensional parameter, and
p0, p1, . . . pn ∈ R2 are the control points, and bnk (τ) are
the Bernstein polynomials of degree n. Bézier curves have
the following properties which makes them well suited for
path planning: (i) A Bézier curve always starts at the first
control point and ends at the final control point. (ii) The
tangent of the curve at these end points aligns with the line
passing through the two end control points. (iii) The Bézier
curve always lies inside the convex hull of the control points.
This property makes them adaptable for path planning in the
presence of obstacles, where one can appropriately constrain
the control points such that the associated convex hull does
not intersect with the obstacles, and construct a feasible path.

In the current problem, the maximum curvature of paths
are required to be less than a limit, κlimit, which corresponds
to the minimum turn radius of the vehicles. For a QBC, there
exists a closed form solution for the maximum curvature and
the length of the path. Therefore, we use QBCs for path
planning in order to address the curvature constraints and
the temporal constraints (manifested as a length constraint).
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Fig. 2. A quadratic Bézier curve with its control points.

Let p0, p1, p2 be the control points of a QBC, P (τ),
shown in Fig. 2. Let m represent the mid-point of the line
joining p0 and p2, At be the area of the triangle 4p0, p1, p2.
In Fig. 2, C1 and C2 are circle with diameters p0m and
p2m respectively. The closed form solution of the maximum
curvature, κmax, of a QBC as a function of the control points
is given in [14], and it depends on the position of p1 as shown
below:

κmax =


‖p1m‖3
A2

t
, if p1 /∈ C1 ∪ C2,

At

‖p0p1‖3
, if p1 ∈ C1,

At

‖p1p2‖3
, if p1 ∈ C2.

(2)

The length of a QBC can be expressed as analytical function
of its control points, and is given below.
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(3)

where W =
√
A+B + C, A = 4(a2x + a2y), B = 4(axbx +

ayby), C = b2x + b2y , and a = p0 − 2p1 + p2, b = 2p1 − 2p0.
The idea to define the path as a concatenation of QBCs

defined by the control points leverages the existence of closed
form solutions for the maximum curvature and the length of a
QBC. This property allows the current path planning problem
to be posed as nonlinear optimization over the control points.
To satisfy the obstacle avoidance constraints, we propose to
guide the QBCs using safe flight corridors, that are defined
by a series of adjacent triangles. We assign a QBC to each
triangle and the QBCs belonging to adjacent triangles are
constrained to be G1 continuous. In the following section, we
present the corridor generation algorithm using constrained
Delaunay triangulation.

B. Corridor Generation

The overall approach of corridor construction involves
three steps. In the first step, we generate the triangulation
of the ‘feasible-space’ using constrained Delaunay triangu-
lation. In the second step, an abstract graph is constructed
where each node of the graph represents a triangle, and the
nodes corresponding to adjacent triangles are connected by
an edge. We construct the corridor using the shortest path
between the nodes representing the initial triangle to final
triangle.

Let O be the set of polygonal obstacles, and let Ov
and Os be the set of vertices and edges of the obstacles,
respectively. We use the Delaunay refinement algorithm in
[17] to generate the triangulation of the feasible space. This
technique generates triangulation with some useful properties
such as the following: The union of the triangles is the
triangulation domain, and any segment is in the union of
the triangulation edges. The Delaunay refinement algorithm
aims to bound the smallest angle in the triangles. This
avoids generating triangles with large or small angles, and
it would be apt for the current path planning problem.
One can define the obstacles as ‘holes’ in the domain and
the Delaunay refinement algorithm avoids generating the
triangulation inside the obstacles. Let Oh denote the set of
‘holes’, where each hole is parameterized by a point inside
an obstacle. The inputs to the Delaunay refinement algorithm
are a planar straight line graph (PSLG), which is defined
using the vertices and edges of the obstacles, and the set
of ‘holes’, Oh. The vertex set also includes the boundary
points, Bd, that defines the whole domain. Let the sequence
of triangles given by the triangulation be denoted by ST . An
example of the triangulation generated using this algorithm
is shown in Fig. 3(a)

In the second phase, we construct an abstract graph based
on the triangulation, ST , obtained from Delaunay refinement.
We construct a graph Gt with vertex set Vt and edge set Et.
A node corresponding to every triangle is added to Vt, and for
every pair of adjacent (those that share an edge) triangles, an
edge is added to Et. The construction of the graph is shown
in steps 4 - 13 of Algorithm 1. The nodes corresponding to
the triangle that contains S is identified as the start node,
ns. The set of nodes that correspond to the triangles that
intersect with line segment TsTf is identified as the goal
node set, Ng . For each node ng ∈ Ng , we list all the paths
from ns to ng , and add these paths to the set Spaths. The set
Spaths is sorted in ascending order of the path lengths, and
for each path in this set a flight corridor is constructed using
the triangles corresponding to the sequence of nodes in the
path. Algorithm 1 returns the list of the feasible corridors in
ascending order of corresponding path lengths in Gt.

The main steps involved in the corridor construction are
shown in Figs. 3(a) - 3(c). The figures show the initial
position of AV1, S, the start and end of the rendezvous line
segment Ts and Tf , and the obstacles, which are represented
as red polygons. The triangulation generated by the Delaunay
refinement algorithm are shown as black dashed lines in
Fig. 3(a). The abstract graph Gt is superimposed on the
triangles, and it is shown with black nodes and blue edges in
Fig. 3(b). A corridor is constructed using the path of shortest
length in Spaths; it is shown as green triangles in Fig. 3(c).

C. Path Optimization

In this section, we present the nonlinear programming
formulation for path optimization. The path consists of set of
QBCs that are concatenated with G1 continuity, i.e. the path
is continuous and has continuous tangent everywhere. The
output of the corridor construction presented in Section III-
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Fig. 3. Illustration of the steps involved in the corridor construction.

Algorithm 1 Corridor construction for the path planning
1: function SAFECORRIDORS(Ov, Os, Oh, Bd)
2: Ov ← Ov ∪Bd
3: ST ← DELAUNAYREFINEMENT(Ov, Os, Oh)
4: Vt, Et ← {}
5: for ∆u ∈ ST do
6: Sadj ← GETADJACENTTRIANGLES(∆u)
7: if NODE(∆u) /∈ Vt then
8: Vt ← Vt ∪ CREATENODE(∆u)

9: for ∆v ∈ Sadj do
10: if NODE(∆v) /∈ Vt then
11: Vt ← Vt ∪ CREATENODE(∆v)

12: if (∆u,∆v) /∈ Et then
13: Et ← Et ∪ CREATEEDGE(∆v) . the

weight of the edges are set to the distance between centroids of the
triangles

14: Gt ← CREATEGRAPH(Vt, Et)
15: ns ← GETSTARTNODE()
16: Ng ← GETGOALNODESET()
17: Spaths ← {}
18: for ng ∈ Ng do
19: Spaths ← Spaths ∪ ALLTPATHS(Gt, ns, ng)

20: Spaths ← SORT(Spaths)
21: Scorrs ← {}
22: for sp ∈ Spaths do
23: Scorrs ← Scorrs ∪ GETCORRIDOR(sp)

24: return Scorrs

B is given as a sequence of triangles, and let this be ∆ =
{41, . . . ,4m}, where m is the total number of triangles
in the corridor. The path construction involves m QBCs
corresponding to the m triangles in ∆. An illustration of this
is shown in Fig. 4, where the black x’s in each triangle are
the control points of the QBC. Let the control points of kth

QBC be pk := {pk0 , pk1 , pk2}, that define the curve as in (1).
The idea is to define the path using m sets of these control
points, pk’s, and formulate the objective and the constraints
such that they could be solved using a nonlinear program
solver.

The Bézier curve always starts at the first control point and
ends at the final control point. Therefore, the first control
point of the first Bézier curve, p10, should be the starting
position of the AV1, (sx, sy). The initial heading of AV1 is
given as sθ, and therefore the second control point p11 should
lie along the ray starting from (sx, sy) with a heading sθ. The
path needs to end on the line segment TsTf with a heading
aligned in the direction Ts → Tf . Because of this, the last
control point of the last QBC, pm2 is constrained to lie on
the TsTf , and pm1 is constrained to lie along a ray starting
at pm2 with heading tθ + π.

To simplify the formulation of constraints, we use a change
of coordinates that define the control points of the QBCs.
The path consists of m Bézier curves that are concatenated
with G1 continuity. The set {p21, . . . pm−11 } are the mid-
control points of the QBCs corresponding to the triangles
2 to m − 1. Let δ be the variable that defines distance
between the final control point on TsTf and Ts. Let α1 be the
variable that defines the distance between first control point
and second control point of the first QBC, and let αm be the
variable that defines distance between pm1 and pm2 . To satisfy
the G1 continuity, each knot point between two successive
QBCs is constrained to lie on straight line connecting the
middle control points of two successive QBCs. For example,
consider two successive QBCs, indexed j and j + 1. For
continuity, the last control point of QBCj , p

j
2, and the first

control point of QBCj+1, pj+1
0 have to be the same, and

pj2 or pj+1
0 should lie on the straight line connecting pj1 and

pj+1
1 . We define the set of variables γj , j = 1 . . .m−1, such

that knot points are given as pj2 = (1− γj)pj1 + γjp
j+1
1 . The

bounds 0 ≤ γj ≤ 1 constrain the knot point pj2 to lie between
pj1 and pj+1

1 . Let xxx represent the set of all the variables
defined above. Note that the pi1’s are Cartesian coordinates of
a point, and therefore consists of two variables representing
the x and y coordinates. With a little abuse of notation, we
define xxx as the following:

xxx := {α1, αm, δ, γ1 . . . γm−1, p
2
1, . . . p

m−1
1 } (4)

The control points that define the m QBCs are functions
of xxx, and in the following subsections, we define the formu-
lations of the constraints that are imposed and the objective
of the nonlinear program as functions of the control points.
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Fig. 4. A QBC for each triangle along the corridor and the corresponding
control points are shown. These control points (pji ’s) are the variables in
the nonlinear program and the path is constrained and optimized over these
variables.

In the following sections, for brevity, we do not explicitly
show the control points as functions of xxx.

1) Initial and Final Configurations: The control point p10
is set to the starting position (sx, sy), and the definition of
the variables δ, α1 and αm implicitly satisfies the initial and
final position and heading constraints.

2) Continuity: By the definition of the variables, γj’s,
the knot points always lie on straight line connecting the
previous and next control points. This implicitly satisfies the
G1 continuity.

3) Obstacle Avoidance: The main premise for the corridor
generation as a sequence of triangles is to formulate the
obstacle avoidance constraints. The sequence of triangles,
Scorr, does not intersect with any of the obstacles. We define
each QBC so that the first and third control point lies on
edges of a triangle and the mid-control point lies inside the
triangle. Therefore, due to the convex hull property of the
Bézier curves, it is sufficient to constrain the control points
of each QBC to the triangles in Scorr, and the resulting path
satisfies the obstacle avoidance constraints. Let {uj , vj , wj}
be the vertices of triangle j in Scorr. The mid-control point,
pj1, of the corresponding QBC is constrained to lie inside the
triangle 4ujvjwj . Without loss of generality, we assume the
vertices {uj , vj , wj} are in counter-clockwise sequence, the
following constraints ensures the mid-control points to lie
inside the corresponding triangles. The subscripts x and y
represent the corresponding coordinates of the points.

(pj1x − ujx)(vjy − ujy)−(pj1y − ujy)(vjx − ujx) < 0 (5)

(pj1x − vjx)(wjy − vjy)−(pj1y − vjy)(wjx − vjx) < 0 (6)

(pj1x − wjx)(ujy − wjy)−(pj1y − wjy)(ujx − wjx) < 0 (7)

∀j = 2, . . .m− 1.

Let pj1 and pj+1
1 be the mid-control points of two QBCs

corresponding to successive triangles in Scorr, and let vj1 and
vj2 be the vertices of the common edge of the two triangles.
The knot point is given as pj2 = (1− γj)pj1 + γjp

j+1
1 , and it

is constrained to lie on the line segment connecting vj1 and

vj2 using the following constraints.

(vj2y − v
j
1y)(pj2x − v

j
1x)− (vj2x − v

j
1x)(pj2y − v

j
1y) = 0 (8)

min(vj1x, v
j
2x) ≤ pj2x ≤ max(vj1x, v

j
2x) (9)

∀j = 1, . . . ,m− 1.

4) Maximum Curvature: The maximum curvature of
QBCj , κmax(pj0, p

j
1, p

j
2), is given in (2), and the following set

of constraints ensures the curvature constraints are satisfied
everywhere along the path,

κmax(pj0, p
j
1, p

j
2) ≤ κlimit,∀j = 1, . . . ,m. (10)

5) Rendezvous: For the rendezvous, the two air vehicles
AV1 and AV2 should arrive at a point on TsTf at the same
time. We assume the air vehicles are traveling at equal
and constant speed. This assumption allows the temporal
constraints to be posed as as length constraints on the path.
The length of each QBC, L(p

j
0, p

j
1, p

j
2) is given by (3), and

the sum of lengths of all the QBCs gives the total length of
the path. Let νt be the constant speed of the air vehicles;
recall ts is the time of arrival of AV2 at Ts, and δ is the
distance between final control points and Ts. The rendezvous
constraints are formulated as follows:

m∑
j=1

L(p
j
0, p

j
1, p

j
2) = (ts + δ)νt. (11)

6) Optimization Problem: The objective of the path op-
timization is to minimize the time of rendezvous, and since
we assume vehicles are traveling at constant speed, this is
equivalent to minimizing total length. Due to the equality
constraints in (11), it is sufficient to minimize the variable δ.
Therefore the nonlinear optimization problem can be posed
as the following:

minimize δ (12)
subject to: (5)-(7), (8)-(9), (10) and (11) (13)

D. Starting Guess

We solve the above nonlinear optimization problem using
gradient based search techniques which are highly dependent
on the starting guess provided to find quality solutions. Here,
we briefly describe how the starting guess for each of the
variables is chosen. The variable δ that defines the last
control point of the last QBC is set to be 0.5 ∗ |TsTf |.
The variables α1 and α2 are chosen randomly such that
the control points p11 and pm1 lies inside the first and last
triangles respectively. For every QBC except the first and
last curves, the second control point, pj1, is chosen to be at
the centroid of the corresponding triangle 4j . The variables
γi’s are chosen such that the control points defined by them
lie on the common edges between successive triangles.

IV. SIMULATION RESULTS

We tested the rendezvous path planning by solving the
nonlinear optimization problem in (12)-(13). We generate
the set of feasible flight corridors using Algorithm 1; this
set of corridors are in ascending order of corresponding
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Fig. 5. Rendezvous paths for scenarios with different values of ts

path lengths in Gt. Starting with the flight corridor cor-
responding to the shortest path, we iteratively solve the
nonlinear program with the next shortest corridor until a
solution is found. The nonlinear program is solved using
the sequential least squares quadratic programming (SLSQP)
algorithm from the ‘NLopt’ library [18]. We use the the
automatic differentiation package of Julia [19] to compute
the gradients of the objective and the constraints that are
required in SLSQP algorithm. The code was written in Julia
[20] and was run on MacBookPro with 16GB RAM and i7
processor.

The trajectories generated for a scenario with five obstacles
and four different arrival times, ts, of AV2 at Ts are shown
in Fig. 5(a) - Fig. 5(d). The initial position of AV1 is
(4000,−2000) and initial heading direction is 2.6 radians
with respect to x-axis. The ends of the rendezvous line seg-
ment Ts and Tf are set as (5000, 7000) and (−2000, 5000).
The maximum curvature limit of the path is set to be 0.002,
which corresponds to a minimum turn radius of 500. The
values of ts corresponding to the four scenarios are 6000,
10000, 20000 and 25000 respectively. The trajectories com-
puted reflect the increasing values of ts, where the algorithm
finds a longer flight corridor for higher ts. In the second
scenario, ts is sufficiently high and the rendezvous occurs at
the starting point. This is as expected as the algorithm aims
for a rendezvous as early as possible and hence returns a
path to the starting position of the rendezvous line segment.
In the third and fourth scenarios, the values of ts are even
larger, and the algorithm finds the feasible trajectory using a
longer flight corridor to satisfy the rendezvous constraints.

We have also run the algorithm for hundred instances
where the positions of the obstacles and the domain end
points are as shown in Fig. 5(a) - Fig. 5(d). For each instance,
the initial position and heading of the AV1 are generated
randomly from a uniform distribution. The values of ts are
also generated randomly in the interval [lmin, lmin + 5000],
where lmin is the shortest feasible path from initial configu-
ration to any point on TsTf without rendezvous constraints.
We use two different triangulation algorithms to generate the
flight corridors; the first one is where the triangles produced
are forced to satisfy the Delaunay property, and in the
second one a Constrained Delaunay Triangulation (CDT) was

TABLE I
AVERAGE COMPUTATION TIMES AND COST FOR 100 INSTANCES

Triangulation Percent Success Mean cost Mean Comp. time
Delaunay 78 % 12538 1.52 (secs)
CDT 84 % 11506 1.02 (secs)
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Fig. 6. Graphical depiction of the flight test implementation.

used where the triangles were restricted to have a minimum
internal angle of 10 degrees. The computational results with
these two triangulations are shown in Table I. The CDT
performed better with respect to the percentage of successful
instances, mean cost of the objective and mean computation
times. Please note that the nonlinear program could not find
a solution for some instances; due to the random generation
of the instances, it is possible that those instances may not
have any feasible solution. The computation times reported
are sufficiently fast for online trajectory generation.

A. Flight Test

The algorithm described in this paper was tested experi-
mentally in a flight test on a Martin UAV Bat-4. This UAV
was equipped with a Piccolo Autopilot and an NVIDIA
Jetson TX2, which is running a copy of UxAS [21], [22].
UxAS is an extendable set of modular services aimed toward
cooperative UAV mission management to handle the follow-



ing high level capabilities of sUAS systems: task planning,
task assignment, task execution, path planning, and sensor
management.

For this flight test the system functionality can be de-
scribed as follows. Initially, the aircraft is commanded to
loiter to the south west of the start location. The path planner
initiates the plan based on a pre-defined start location. This
path is discretized into straight line segments and sent to
UxAS to follow. UxAS uses the air vehicle state information
that is broadcast from the autopilot to compute heading
commands to follow the path [23], [24]. The trajectory
generated by the algorithm presented may not be curvature
continuous, however the path following error for such paths
is insignificant for small UAVs.

The flight test occurred at Camp Atterbury Indiana in
November of 2020, and the scenario is depicted in Figures
7(a) and 7(b). The figures depict a local tangent plane with
units of meters above Camp Atterbury. The obstacles are
in red and the path for the (synthetic) AV2 is green. The
orange path is the discretized path computed using the same
algorithm and code as describe above and the blue path is the
telemetry of the UAV. For this initial test, the start location
for the planning was not computed based on the position
of AV1; instead, AV1 was commanded to loiter south-west
of the start location. For this reason, you see the blue path
progress to the orange path to follow. From the flight test,
we were able to verify that the algorithm is light-enough to
be able to run on an on-board ARM processor.

V. CONCLUSION

We presented a path planning problem for a rendezvous
application that involves two air-vehicles with kinematic
motion constraints. The application requires two air vehicles
to rendezvous on a predefined line segment. The environment
has obstacles and the trajectory generated is subject to
obstacle avoidance and curvature constraints. To address the
temporal constraints due to rendezvous, we impose length
constraints on the path. We propose a methodology that
involves generating paths as a concatenation of piecewise
quadratic Bézier curves that are G1. A flight corridor, con-
structed as a sequence of triangles, is generated using De-
launay refinement algorithm and the curves are bound to the
corridor to avoid the obstacles. The existence of closed form
solution for maximum curvature and the length of QBCs
enables us to pose the problem as a nonlinear optimization
problem. This algorithm finds feasible paths that are locally
optimal and the proposed methodology is viable for on-board
computation. This is corroborated using simulations and
experiments. The proposed method can be easily extended to
the scenario where the paths for the two vehicles needed to
be generated simultaneously. The nonlinear program solvers
are dependent on good starting solutions and it is a potential
drawback that needs to be addressed in the future work.
Also, the path planning assumes no disturbance due to wind,
considering wind disturbances is another direction of future
work.

(a)

(b)

Fig. 7. Flight test results with smaller ts
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