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Abstract—This paper explores a multi-agent containment
problem, where a fast evader, modeled having constant speed and
using constant heading, attempts to escape a circular containment
region that is orbited by a slower pursuer with a nonzero capture
radius. The pursuer is constrained to move along the edge of the
containment region and seeks to capture the evader. This paper
presents an in-depth analysis of this pursuer-evader containment
scenario. First, multiple types of capture conditions for a single-
pursuer case are analyzed defining the worst-case initial position
for the pursuer. Second, a parametric study is performed to
demonstrate the effects of speed ratio, capture radius, and
initial location of the evader. Finally, a reachability analysis is
performed to investigate the viable escape headings and reachable
regions by the evader. This work provides a foundation for the
analysis of escape under more general evader inputs as well as
a multiple-pursuer version of the scenario.

Index Terms—Containment, multi-agent, pursuit-evasion, op-
timization.

I. INTRODUCTION

The field of differential games and optimal control has
proven to be an effective tool in the analysis of adversarial
scenarios with applications in vehicle motion planning [1],
military combat [2], [3], medicine [4], and economics [5]. The
pursuit-evasion game is one of many fundamental problems
that can be related to real world scenarios [6]. A well formu-
lated introduction to pursuit-evasion problems formulated as
differential games is made by [3]. Extensions to the basic setup
of the problem have been made and added to the literature (c.f.,
[7]). The Tag-Chase game, the homicidal chauffeur, and the
lady in the lake are some examples of scenarios studied over
the years.

An extension to the “Lady in the Lake” problem is being
considered in this paper. The Lady in the Lake problem orig-
inally posed by Martin Gardner in a mathematics column [8]
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(later analyzed in detail in [6], [9]) is an instance of a reach-
avoid problem, which is simply a special type of pursuit-
evasion problem where the lady (evader) attempts to escape
the lake (a containment region) without being captured by
a pursuer standing at the edge of the lake. In the scenario
considered here, a fast evader (E) is located within a circular
containment region and moves with a constant speed and fixed
heading angle. A slower pursuer (P ) orbits the containment
region and is constrained to clockwise (CW), or counter-
clockwise (CCW) motion along the edge of the region. It
is endowed with a finite (nonzero) capture radius. Capture
is said to occur if E comes within the capture radius of P .
The goal of E is to escape the containment region while P
attempts to capture E. Note that, since it is assumed that
the Evader is faster, escape (under general heading control
inputs) against a single pursuer is always possible. This study
is mainly concerned with straight-line motion of the evader
as such behavior often arises as an extremal control in such
scenarios as this [6].

A similar problem setup is analyzed in [10], in which an
evader seeks to escape a circular region orbited by multiple
pursuers in an evenly distributed formation. There, the evader
is assumed to be slower than the pursuers, so there are regions
of the state space in which the latter can prevent the former
from escaping. Additionally, that work considers capture to
occur if the evader and any pursuer become collocated (i.e.,
point capture). Here, the evader is given the advantage of speed
while the pursuer is given an advantage in having a nonzero
capture radius. As will be shown throughout the remainder,
the inclusion of the nonzero capture radius significantly com-
plicates the analysis of the scenario.

Several other works have analyzed scenarios in which an
agent (or team of agents) wish to contain an adversary within
an environment (or prevent its entry into a protected area).
For example, the works [11], [12] seek to develop cooperation
among a team of agents to prevent the escape of an evader.
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Like this paper, the works [13], [14] involve a pursuit-evasion
game which takes place inside a circle in which the evader
seeks to escape prior to capture; there, the pursuer(s) was
not constrained to the circle boundary. The classic Lion and
Man differential game [15] also takes place in a circular play
region, but the game (typically) does not end if the evader is
able to reach the boundary of the play region. Containment
of an adversary is also an objective of the herding scenario
presented and analyzed in [16]. In [17] a team of fast defenders
constrained on a circular region are tasked with preventing
intruders from reaching the circle from outside (by capture
via point capture). In [18] a slower defender with a nonzero
capture radius attempts to either capture an intruder or prevent
it from entering the protected area indefinitely. Finally, in [19]
as a nonlinear control synthesis method was developed to
enable a team of slower pursuers to prevent an evader from
reaching its target.

The contributions of the paper are as follows: i) identifi-
cation of all possible capture configurations, ii) computation
of the worst-case pursuer initial condition for a given evader
heading (i.e., the one in which the pursuer starts the furthest
away), iii) a parametric study of the capture configurations
and worst-case pursuer initial conditions, iv) a reachability
analysis from the perspective of the evader which identifies
safe headings for the evader to take. The utility of these results
is demonstrated on the analysis of a two-pursuer variant of the
problem.

The remainder of the paper is organized as follows. Sec-
tion II describes the mathematical formulation of the problem.
Section III, which represents the bulk of the study, contains
the analysis of the various capture configurations as well as
the worst-case pursuer initial position. Sections IV and V
contain the parametric study and evader reachability analysis,
respectively. The paper is concluded in Section VI with a few
remarks on some extensions for which the results presented
herein will be valuable.

II. PROBLEM FORMULATION

The pursuer-evader scenario in two-dimensional space is
illustrated in Fig. 1. In this scenario, a fast evader, E, is located
within a containment circular region of radius R and attempts
to escape. A slow pursuer, P , is located along the containment
region edge, or ring, and is constrained to circular motion
along the ring only. P has a nonzero capture radius, ρ > 0, and
tries to capture E before it escapes. We consider E and P to
have constant speeds vE and vP , respectively. The speed ratio
is defined as γ = vP /vE < 1 and, without loss of generality,
we normalize the speeds so that vE = 1 and vP = γ.

In Cartesian coordinates, the dynamics of P are

ẋP = vP cosψP , ẏP = vP sinψP . (1)

where (xP , yP ) denotes the position of the pursuer, and ψP

denotes the heading angle of P . As aforementioned, P , moves
in circular motion, thus, the heading angle of P is

ψP = θP + a
π

2
. (2)

Here, θP represents P ’s angle with respect to the î axis,
and a ∈ {−1, 1} represents a quantity which depends on the
direction of motion of P . We use a = −1 for clockwise motion
(CW) of P and a = 1 for counter-clockwise motion (CCW)
motion of P .

Similarly, the dynamics of E in Cartesian coordinates are
described as:

ẋE = vE cosψE , ẏE = vE sinψE . (3)

where (xE , yE) denotes the position and ψE denotes the
heading angle of the evader. The heading angle of E is
assumed to be constant with time for this formulation.

Containment Ring
Escape Location
Pursuer
Capture Radius
Evader

Fig. 1. Basic Scenario with One Pursuer

Given the circular geometry of the scenario, it is only
natural to transform the Cartesian dynamics into relative polar
coordinates. The equations of motion are developed using the
geometry of Fig. 1. Defining the line of sight (LOS) distance
between E and P as RPE , and the LOS angle as λ, we have
the following:

RPE =
√

(xE − xP )2 + (yE − yP )2, (4)

λ = tan−1 yE − yP
xE − xP

. (5)

The angles between the velocity of the evader and the LOS,
ϕE , and that between the velocity of the pursuer and the LOS,
σP , are as follows:

ϕE = ψE − λ, (6)
σP = ψP − λ. (7)

Substituting ψP from (2), we calculate the rates of change for
the LOS angle, and the relative velocity angles as:

λ̇ =
ve sinϕE − vP sinσP

RPE
, (8)

ϕ̇E = −λ̇, (9)

σ̇P = θ̇P − λ̇, (10)

θ̇P = a
vP
R
. (11)

The distance rate is given by:

ṘPE = vE cosϕE − vp cosσP . (12)
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Fig. 2. Point Capture Geometry

Given the equations of motion shown above, we can discard
the λ̇ state since its motion is captured by ϕ̇E and σ̇P . A final
relative polar space is described as:

ṘPE

θ̇P
ϕ̇E
σ̇P

 =


vE cosϕE − vp cosσP

a
RvP
−λ̇

θ̇P − λ̇

 (13)

Note that this is not a minimal polar representation. Some
of the states are redundant, but we include them here as a
continence for the purpose of the analysis.

III. WORST-CASE CAPTURE FOR ONE PURSUER

This section covers the general scenario for one pursuer, the
different types of capture conditions and the analysis of each of
them, as well as the final process to find the capture condition
that allows for the maximum angular range for the pursuer’s
initial condition, i.e. the initial condition that is furthest away
from E’s escape location along the containment ring. Initial
conditions that correspond to this worst-case scenario require
the pursuer to travel the largest distance before capturing the
evader, that is, θP0 − θF is the largest.

A. Capture Types

The following subsection covers the multiple types of
capture that are defined and analyzed. The goal is to obtain
equations that give the most limiting (i.e. the worst-case
scenario) initial location of the pursuer to achieve capture
based on the speed ratio, γ, P ’s capture radius, ρ, E’s initial
location along the x-axis, r, and E’s aim point angle, θF .
Without loss of generality it is assumed in this section that
the pursuer moves clockwise (that is, a = −1).

1) Point Capture: Let us first analyze the simplest case of
point capture where the capture radius of P is ρ = 0. Point
capture occurs when the position of E and P are collocated
on top of each other. Since P is constrained to motion along
the ring, capture will occur when E is positioned along the
ring as shown in Fig. 2. We can calculate the time to capture
by dividing the distance travelled by E or P from its initial
position to the exit point, d, by its velocity.

tc = d/v. (14)

Starting with the evader, and assuming the aim point angle,
θF , is known, we can obtain a value for the distance travelled,
d, or according to Fig. 2, segment EF , using the Law of
Cosines. Substituting for the respective values we obtain the
following:

EF =

√
R2 +OE

2 − 2ROE cos θF . (15)

We now substitute EF in (14) for d to obtain the following:

tc = EF/vE . (16)

Similarly, we can obtain the time of capture of P by using
the arc length equation to solve for d as follows:

d = R(θP0 − θPf ), (17)

where θP0 and θPf are the initial and final angles of P , respec-
tively. Just as before, we substitute (17) into (14) appropriately
to obtain:

tc = R(θP0 − θPf )/vP . (18)

Now, we can equate (16) and (18) and solve for the initial
angle of P , θP0. This results in the following simple equation:

θP0 = θPf − γEF

R
, (19)

where the point capture condition, θPf = θF , the speed ratio,
γ = vP /vE , and a ∈ {−1, 1} depending on the direction of
P .

Additionally, we can obtain the heading of E again by using
the Law of Cosines:

ψE = π ∓ arccos
OE

2
+ EF

2 −R2

2OEEF
. (20)

2) Exit Point Capture: For this condition, P is given a
nonzero capture radius, ρ > 0. Exit point capture (EXC)
occurs when P captures E when E is located along the
containment ring as shown in Fig. 3. The same methods as
those used for point capture before can be used for this capture
condition. The capture times of E and P can be set equal to
each other to obtain:

EF/vE = R(θP0 − θPf )/vP . (21)

Now, θPf is not simply θF but note that for this capture
condition, there is an offset angle ϕ as shown in Fig. 3. This
offset is calculated using the chord formula as such:

ϕ = 2arcsin
ρ

2R
. (22)

The final angle of P is now:

θPf = θF − 2 arcsin
ρ

2R
. (23)

Now, we can calculate the initial position of P for an EXC
condition as follows:

θP0 = θF − γEF

R
− 2 arcsin

ρ

2R
. (24)
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Fig. 3. Exit Point Capture Geometry

Analysis: After analyzing the EXC condition on different
scenarios, it was found that for some given combination of
speed ratio, capture radius, and E’s heading angle, and due to
the geometry of the problem, the evader gets captured before
it reaches the exit point F as shown in the blue curve in Fig. 4.
In this figure, the area below the capture radius line represents
the evader going into the pursuer’s capture zone. Note that the
blue curve crosses this line at two points which indicates that
there is a point earlier in time where E could be captured,
and an initial condition of P further along the ring that could
accomplish this. We can determine that this is not the worst-
case solution for this scenario, and this is not always the case.
A comparison is made later.
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Fig. 4. Exit Point Capture Relative Distance and Relative Distance Rate

3) Tangent Capture: Tangent capture (TAC) occurs when
the the pursuer intersects the E’s path at a tangent point.
The vector loop closure method is used to find the distance
travelled by the evader before capture. For this method, we
treat the geometry shown in Fig. 5 as a four-bar mechanism
consisting of segments OE,EI, IP and PO. Note that seg-
ments EI and IP have a perpendicular relation, and that IP
is equal to the capture radius, ρ, of the pursuer. As such, these
are treated as a single bar. The vector loop closure consists of
summing the î and ĵ components of the vector loop such that
the result is zero.
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Fig. 5. Tangent Capture Geometry

OEî+ EIî+ IP î+ POî = 0, (25)

OEĵ + EIĵ + IP ĵ + POĵ = 0. (26)

Substituting in the respective component values we obtain the
following:

xE + EI cosψE + ρ cos (ψE + π/2) = R cos θP , (27)

yE + EI sinψE + ρ sin (ψE + π/2) = R sin θP . (28)

The above equations are simplified by taking into account
the trigonometric identities cos (x+ π/2) = − sinx and
sin (x+ π/2) = cosx. Additionally, we assume E to always
lie in the î axis such that yE = 0.

xE + EI cosψE − ρ sinψE = R cos θP , (29)

EI sinψE + ρ cosψE = R sin θP . (30)

Both equations are now squared and summed. Using the
trigonometric identity sin2 x + cos2 x = 1, we are able to
cancel θP and obtain:

EI
2
+ (2xE cosψE)EI

+ (x2E + ρ2 − 2xEρ sinψE −R2) = 0. (31)

Let a = 1, b = 2xE cosψE , and c = x2E + ρ2 −
2xEρ sinψE − R2, and substitute into the standard quadratic
formula to obtain the equation for EI as:

EI = −xE cosψE±√
−x2E sinψE + 2xEρ sinψE − ρ2 +R2. (32)

We now have an equation for EI , from which only the
positive solution represents capture when time is positive, and
the negative case represents the condition where E moves
backwards rather than forwards. This distance is used to obtain
the time travelled by E before capture by substituting the
above expression into (14). Now, to calculate the distance
travelled by P , we must first find the final location of P .
By assuming θF is known, we can set the final location angle
of P as simply an offset of ϕ from θF , as shown in Fig. 5.
Related to this angle is the segment PF , or c as shown in



Fig. 5, as c represents the chord of ϕ. We calculate c using
the Pythagorean theorem noting that IF = EF − EI . We

obtain c =

√
IF

2
+ IP

2
Now, we can simply solve for the

offset angle, ϕ, by using the chord formula:

ϕ = 2arcsin
c

2R
. (33)

The final angle of P is described as:

θPf = θF − 2 arcsin
c

2R
. (34)

We calculate the initial position of P for a TAC condition as
follows:

θP0 = θF − γEI

R
− 2 arcsin

c

2R
. (35)

Analysis: After analyzing the TAC condition on different
scenarios, it was observed that for all scenarios, the TAC con-
dition resulted in a shorter range in initial conditions compared
to the EXC condition shown before. This is shown in Fig. 6
where the square markers represent the initial positions for
each of the capture conditions given. Note the green square
marker representing the EXC is placed further back along the
ring compared to the purple square marker representing the
TAC condition. However, the final positions where capture
occurs give us two limiting cases between which another
capture condition may be found.

Containment Ring
Tangent Capture
Exit Point Capture

Initial Positions 

Capture                       Locations 
Final Positions 

E

Fig. 6. Comparison of TAC and EXC Conditions for Parameters: ρ = 0.5,
γ = 0.5, ψE = 1.6π

4) Touch-and-Go Capture: The Touch-and-Go capture
(TGC) condition occurs when two conditions are met: RPE =
ρ, the basic condition that assures E has been captured, and
ṘPE = 0, the distance rate is zero. We can note from Fig. 4
that the blue curve has a local minima that represents where
ṘPE = 0 as shown in the orange curve of the same figure. The
TGC condition captures the evader at the exact moment where
the distance between E and P is at its minimum. The final
position of P is found numerically using the Bisection search
method by setting the final locations of the TAC and EXC
conditions as upper and lower boundaries and looking for the
final position of P that meets the two conditions stated. Once
this final location is found, the position of P is backtracked
to find its initial location along the ring.

Analysis: After analyzing the TGC it was found that for
a specific set of speed ratio, and capture radius size, there

Distance rate

is zero 

Capture occurs

at minimum 

distance 

0 0.2 0.4 0.6 0.8 1
Time (sec)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Capture Radius Line

R
el

at
iv

e 
D

is
ta

nc
e,

 

R
el

at
iv

e 
D

is
ta

nc
e 

R
at

e,

Fig. 7. TGC Relative Distance and Relative Distance Rate
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Fig. 8. Touch-and-Go Capture Geometry

exists an interval of heading angles of E where the TGC
conditions covers the most range (in terms of the pursuer’s
initial position) when compared to EXC and TAC. This is
shown in Fig. 9 where TAC, EXC and TGC conditions are
compared. Note the initial location of the TGC condition
(orange square marker) is located further away along the ring
compared to the other two conditions. Additionally, as the
heading angle reaches the extremes of such interval, the TGC
slowly transitions into a EXC condition.

Containment Ring

Tangent Capture

Touch-and-Go Capture

Exit Point Capture

Initial Positions 

Capture
 Locations 

Final Positions 

Fig. 9. Comparison of TAC, EXC and TGC Conditions for Parameters: ρ =
0.5, γ = 0.5, ψE = 1.6π



B. Worst-case Capture

Worst-case capture for this problem is defined as the cap-
ture condition that covers the most angular range along the
containment ring. This is the condition that allows the pursuer
to be furthest back along the ring and still be able to contain
E. This creates the most limiting scenario for P . Different
types of capture conditions have been described and analyzed
to define such boundaries. It was found that for a given set
of fixed parameters ρ and γ, the worst-case capture condition
type depends on ψE , having EXC as worst-case when ψE

is close to 0 or π, and TGC as worst-case for the interval
in between. An example is shown in Fig. 10 where the set
parameters are ρ = 0.5 and γ = 0.5, and E is initially located
0.4 along the î axis as shown by the blue square marker. The
circle markers denote the capture locations for escape headings
where π ≤ ψE ≤ 2π with P capturing in a CW motion. The
green markers show EXC conditions while the orange markers
show TGC conditions.
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Fig. 10. Worst-case Capture for Different Headings of E

IV. PARAMETRIC STUDY

A parametric study is performed to investigate the effects of
varying the speed ratio, capture radius, and initial location of
E. The following figures depict the location of capture along
the bottom half of the containment region. Figure 11 shows
the effects of varying the speed ratio, γ while keeping the
capture radius and initial location of E as ρ = 0.5 and r =
0.4, respectively. Note that as γ increases, the capture location
occurs nearer to the edge of the circle. Similarly, Fig. 12 shows
the effects of varying the capture radius, ρ while keeping the
rest of the parameters as: γ = 0.5 and r = 0.4. Note that as ρ
decreases, the capture location occurs nearer to the edge of the
circle region, until point capture is achieved and all captures
are of the EXC condition. Finally, Fig. 13 shows the effects
of varying initial location of E along the î-axis while keeping
the set parameters as: ρ = 0.5 and γ = 0.5. Note that as the
location of E translates to the center of the circle, the capture
locations occur closer to the edge of the circle region until all
captures are of the EXC type.
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Fig. 11. Capture Locations Varying Speed Ratio (ρ = 0.5)
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V. REACHABILITY ANALYSIS

A reachability analysis is performed to study viable escape
headings for E, i.e. the escape and capture regions of the prob-
lem. Figure 14 shows the basic scenario with a single evader
and a single pursuer. P ’s initial location is fixed as shown and
is constrained to move CW. The green region represents the
viable escape headings while the orange headings represents
the capture headings.

Figure 15 shows the case for a two-pursuer scenario where
the pursuers move in CW motion and are a) consecutively
located along the ring and b) evenly located with respect to 0
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Fig. 15. Reachability of Two Pursuers a) Consecutively Located, and b)
Evenly Located

Similarly, Fig. 16 shows the case for a two-pursuer scenario
where the pursuers are evenly located with respect to 0 rad
and move in a) a fixed CW and CCW motion and b) the
most favorable direction given E’s aim point angle, θF , is
known, that is, P can decide to move CW or CCW depending
on which will correspond to a smaller angular range between
P ’s initial position and E’s heading.

a) b)

π 0

π/2

3π/2

π 0

π/2

3π/2

Fig. 16. Reachability of Two Pursuers Evenly Located a) Moving in Opposite
Directions, and b) Moving in Favorable Directions

VI. CONCLUSION

The problem of a single evader attempting to escape from
a containment circular region and a pursuer attempting to
capture the evader was considered. This scenario resembles

the classical Lady in the Lake problem, but analyzes the case
where the evader is faster than the pursuer, but the pursuer
has a nonzero capture radius. Different capture conditions
were discussed to define the most limiting case for capture
to occur. A parametric study was performed to investigate the
effects of speed ratio, capture radius size, and initial location
of the evader. Finally, a reachability analysis was performed
to find viable escape headings for the evader and illustrate
escape and capture regions. As expected, a single pursuer
is unable to guarantee capture for most headings, thus, the
pursuer must rely on a team to extend the capture regions. This
analysis represents foundational work for future extensions of
the problem such as the incorporation of multi-pursuers, an
evader with more complex motion, and malicious agents that
aid the evader to escape.

REFERENCES

[1] M. Mirzaei, A. Kosari, and H. Maghsoudi, “Optimal path planning
for two uavs in a pursuit-evasion game,” in 2021 IEEE International
Conference on Automation/XXIV Congress of the Chilean Association
of Automatic Control (ICA-ACCA), pp. 1–7, IEEE, 2021.

[2] M. Ardema, M. Heymann, and N. Rajan, “Combat games,” Journal of
Optimization Theory and Applications, vol. 46, pp. 391–398, 1985.

[3] R. Isaacs, Differential Games: A Mathematical Theory with Applications
to Optimization, Control and Warfare. New York: Wiley, 1965.

[4] A. Buratto, R. Cesaretto, and R. Zamarchi, “Hiv vs. the immune system:
A differential game,” Mathematics, vol. 3, no. 4, pp. 1139–1170, 2015.

[5] A. Friedman, Differential games. Courier Corporation, 2013.
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