
Optimal Generator Policy for Hybrid Fuel
UAV under Airspace Noise Restrictions

Drew D. Scott ∗ Isaac E. Weintraub ∗∗

Satyanarayana G. Manyam ∗∗∗ David W. Casbeer ∗∗

Manish Kumar ∗

∗ Department of Mechanical and Materials Engineering, University of
Cincinnati, Cincinnati, OH 45221 (e-mail:

scott2dd@mail.uc.edu,kumarmu@ucmail.uc.edu)
∗∗ Control Science Center, Air Force Research Laboratory,

Wright-Patterson AFB, OH, 45433 (e-mail:
isaac.weintraub.1@us.af.mil, david.casbeer@us.af.mil)

∗∗∗ Infoscitex Corp., a DCS Company, Dayton OH, 45431 (e-mail:
msngupta@gmail.com)

Abstract: Here we study an optimal control problem involving energy management of a hybrid-
fuel Unmanned Aerial Vehicle (UAV). The planning problem for a hybrid-fuel platform involves
determining the path while managing the energy resources, which includes a policy for power
modality switching whenever applicable. The hybrid-fuel platform considered here involves a
generator and battery pack combined in a series fashion as energy sources on-board a UAV.
Also included in the problem are the noise restrictions, which place constraints on generator
operation depending on the airspace location. These emulate possible restrictions on UAV noise
that occur in military surveillance missions or in urban path planning, where the collective
noise of many UAVs, some with combustion engines, may be restricted in certain areas or times
of the day. We present a hybrid methodology which starts from an initial path and generator
pattern obtained from a mixed integer linear program (MILP) solution. The generator pattern
from the discrete solution is then refined in an optimal control framework with an objective to
minimize fuel usage, while considering the nonlinear battery and generator dynamics and noise-
restriction constraints. Optimal control problem is solved with a nonlinear program solver,
IPOPT. Numerical results are presented and analyzed with varying path lengths and scenarios.
This work aims to serve as an initial study of this hybrid-fuel UAV problem within an optimal
control framework, which can be extended to refinement of both the generator pattern and the
trajectory in tandem, while considering vehicle and power dynamics that are often ignored in
discrete path planning solutions.

Keywords: UAV, hybrid-fuel, optimal control, path planning, optimization, hybrid methods,
nonlinear programming

1. INTRODUCTION

The utilization of multiple fuel sources on a single platform
has been implemented extensively in automobiles, with
increasing use in Unmanned Aerial Vehicles (UAVs). Fuel
hybridization offers similar advantages to UAVs as it
does to automobiles. However, the control and autonomy
problems for UAVs differ from automobiles and thus
hybridization applied to UAVs results in a new set of
problems which must be addressed.

Fuel hybridization for UAVs is of utility in Urban Air
Mobility (UAM) and UAV Traffic Management (UTM),
primarily due to the extended endurance. This extended
range broadens the applicability of the fleet of UAVs under
consideration to wider variety of missions. For certain
hybrid UAVs, the switching of power/energy modalities
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during the course of a mission could be possible and is
advantageous. This results in a new problem of determin-
ing the power modality throughout the mission with an
objective to maximize energy efficiency or flight time. This
can also allow the advantages of each power or energy
modality to be maximized throughout the flight and their
pitfalls minimized. An overview and survey of hybrid-
fuel aircraft is given in Townsend et al. (2020), which
also provides characteristics of different fuel sources in the
context of UAVs.

We consider here a platform which combines a combustion
engine, powered by some liquid fuel, and a battery pack
as energy sources. As discussed in Townsend et al. (2020),
battery packs provide high power density with poor energy
density. Combustion engines have high power and energy
density, while being both very heavy and very noisy. The
former is a problem for small UAV (sUAV) while the
latter is a problem in urban environments or in stealth-



critical missions due to its noise. Here we are motivated
by the latter issue, one of excessive noise. In these urban
environments or stealth-critical missions, noise production
becomes an important consideration in the path planning
and power management problems for the UAVs. Running
the motors with power from the battery pack while the
generator is off allows relatively quieter operation which
we consider to be a minimal noise level on the ground.
Thus, for certain restricted areas of airspace, the on-board
generator cannot be run, and it is free to be turned on or
off in unrestricted areas.

This problem of noise-restricted path planning and energy
management for UAVs has been considered prior in Scott
et al. (2022); Manyam et al. (2022), where a discrete
formulation and solution for the problem is presented.
Here, we wish to approach the problem from a different
direction. Path planning and energy management is often
done in a discrete manner on a graph. This approach is so
often used as solutions can be obtained quickly and reliably
by formulation as a well-studied Shortest Path Problem
(SPP) variant, or a formulation close to one of these
variants. This allows existing algorithms and techniques
to be applied to generate fast solutions. However, this
discrete solution must be processed at some point into a
smoothed trajectory to be flyable by the UAV. Further,
a continuous approach will allow finer management of
the UAV’s path and power modalities during the mission
while also allowing higher-fidelity nonlinear dynamics to
be considered rather than a linear approximation.

The problem considered here is using an optimal control
framework Kirk (2004); Bryson and Ho (1975) to deter-
mine the generator state along a given trajectory to the
end of minimal fuel usage. We use a solution from the
discrete path and energy management algorithm described
in Scott et al. (2022). The generator control returned from
the same algorithm is used as an initial guess for the
optimizer to solve the optimal control problem (OCP).
For a given noise restrictions along the path, the OCP
aims to refine the generator control while minimizing the
expended fuel. The generator control returned from the
discrete pattern is a binary one, specifying the generator
only as on/off, however the engine and batteries have their
own dynamics and may operate at non-extreme values to
the end of higher energy efficiency. Using optimal control
allows refinement of the discrete solution while using the
discrete solution as an initial guess improves the overall
computation time. In this paper, our focus is to compute
the generator control that minimizes the fuel consumption
for a given path. However, the final aim of this work is to
develop a method which computes both the generator con-
trol and the trajectory in tandem, which is a considerably
harder problem. This extension of the problem is further
discussed in Section 6.

The approach in this work begins with the solution to
the discrete problem obtained as an initial guess Scott
et al. (2022) to be refined within optimal control problem.
such that the optimal generator control to minimize fuel
usage is find. To find the optimal generator control over
a given flight, the direct method of optimal control is
leveraged Kelly (2017); Betts (1998, 2010). Rather than
using the indirect method of optimal control Kirk (2004);
Bryson and Ho (1975) which solves for costates and in-turn

provides the optimal control, the direct method performs a
search for the optimal control directly. The direct method,
as presented in this work, searches for an optimal control
using a nonlinear program (NLP) solver that minimizes
a given objective cost functional subject to a system of
ordinary differential equations, equality, and inequality
constraints. The hybrid method (using a discrete solution
as an initial guess for an OCP) is illustrated in Fig. 1.

This paper is organized as follows. A discussion of related
prior works is given in Section 2. In Section 3 the MILP for-
mulation of the discrete problem, taken from the authors’
prior work, is re-presented in brief. The Optimal Control
Problem is formulated in Section 4. Numerical results are
presented in Section 5. Finally, conclusions are made and
future work discussed in Section 6.

2. PRIOR WORK

The path planning and power management of a hybrid-
fuel UAV under consideration was discussed and analyzed
in Scott et al. (2022); Manyam et al. (2022). Other
works concerned with path, trajectory, and power planning
of hybrid-fuel UAVs are found in Klesh and Kabamba
(2009); Hosseini and Mesbahi (2016), where the problem
is solved in an optimal control framework. Hybrid-fuel
vehicle control strategies in general have been studied
prior, with a main focus on powertrain management and
control, a few primary examples being Bumby and Forster
(1987); Jalil et al. (1997); Sinoquet et al. (2011).

When formulated as a discrete problem, the hybrid-fuel
UAV planning problem is reminiscent of the Resource
Constrained Shortest Path Problem (RCSPP). In the
RCSPP (Pugliese and Guerriero (2013)), resources are
tracked along the path where bounds are placed such that
certain paths are infeasible due to resource consumption.
Often, fuel or energy is modeled in this fashion. The
standard problem does not allow resource regeneration,
e.g. a refueling node/arc. A version allowing resource
regeneration is known as the RCSPP with Regeneration
(RCSPP-R), and has been scarcely studied relative to the
main variant, with two recent studies on this problem
found in Bolivar et al. (2014) and Smith et al. (2012). For
the standard RCSPP-R, replenishment is implicit based
on the path taken. That is, nodes and edges are defined
a-priori as replenishment events, rather than regeneration
being an explicit decision. The only prior work, to the
author’s knowledge, considering an RCSPP problem where
replenishment of resources is decided explicitly is found in
the network relay problem in Cabral (2005); Cabral et al.
(2007, 2008), as well as the studies directly on hybrid-fuel
UAV path planning in Scott et al. (2022); Manyam et al.
(2022).

Prior work has considered hybridization of optimal control
with other schemes for US Air Force missions Jodeh
(2015); Humphreys (2016); Zollars (2018). Jodeh provided
solutions from a traveling salesman problem (TSP) prior
to using direct orthogonal collocation (DOC) solved by a
nonlinear program solver (NLP) for persistent surveillance
and data collection Jodeh (2015). Humphreys presented a
particle swarm optimization (PSO) to obtain initial tracks
for DOC and then leveraged an NLP solver for obtaining
optimal strategies for an unmanned aerial system (UAS) to



avoid threat regions and support a teammate Humphreys
(2016). Zollars used constrained Delaunay triangulation to
map a field containing obstacles and then used A* search
to provide initial guesses for DOC and NLP solutions
to find min-time strategies for navigating through urban
environments Zollars (2018).

3. PATH AND GENERATOR PROBLEM
FORMULATION IN MILP FRAMEWORK

For completeness, we restate briefly the Mixed Integer
Linear Program (MILP) as given in Scott et al. (2022).
The problem is posed on a graph with a set of nodes N
and edges E. The edges are chosen so as to not intersect
predefined keep-out zones; thus the formulation naturally
addresses staying out of the predefined keep-out zones.
The problem is formulated using set of binary variables
xij ’s; xij is equal to one, if the edge (i, j) is used in the
solution, and it is zero otherwise. Another set of binary
variable gij ’s indicate if the generator is turned on along
edge (i, j). Graph parameters include Dij representing the
cost of edge (i, j), Cij for battery state of charge (SOC)
usage, Zij for both energy transfer to the battery and fuel
burn by the generator, and Gij for noise restrictions. The
battery and fuel state at any node i are tracked by bi and gi
respectively. The values B0 and Q0 are the initial battery
and generator states respectively and Bmax and Bmin are
the maximum and minimum battery charge respectively.

min
x

∑
i

∑
j

Dijxij (1)∑
j∈N

xSj = 1 (2)∑
j∈N

xjF = 1 (3)∑
j∈N

xij −
∑
j∈N

xji = 0 ∀i ∈ N \ {S, F} (4)

Bmin ≤ bj ≤ Bmax ∀j ∈ N \ S (5)

bS = B0 (6)

bj ≤ bi − Cij

+ Zijgij +M(1− xij) ∀(i.j) ∈ E (7)

qj ≥ 0 ∀j ∈ N \ S (8)

qS = Q0 (9)

qj ≤ qi − Zijgij +M(1− xij) ∀(i.j) ∈ E (10)

gij ≤ xij ∀(i.j) ∈ E (11)

gij ≤ Gij ∀(i.j) ∈ E (12)

The description all equations are provided in Scott et al.
(2022). The above problem seeks to find a path through
the graph from the start S to end node F with minimal
cost, while satisfying the battery, generator, and noise-
restriction constraints. This can be solved in a variety of
ways, with the original paper using both a branch-and-
bound algorithm and a labeling algorithm which utilizes
dynamic programming. As shown in Scott et al. (2022),
this problem can be solved on graphs of thousands of
nodes. While this can provide fast solutions, it does not
account for the vehicle dynamics, and the battery and
generator dynamics are simplified to linear relationships.
Therefore, post-processing must be done in some manner

to get a smooth prediction for the UAV’s generator and
battery states and trajectory. The MILP above also only
allows the generator to be either on (full throttle) or
off. However, it may be beneficial to allow the generator
throttle to take on a value between off and maximum
throttle. To this end, we define an OCP that determines
a continuous generator control along the path generated
by the discrete solution, to the end of minimal fuel use
accounting for the nonlinear power generator and battery
system dynamics; the starting solution for the OCP is
derived from the MILP solution.

4. OPTIMAL CONTROL

The optimal control problem determines the optimal gen-
erator policy (along a given path) that minimizes fuel
consumption while satisfying the noise-restrictions. The
current objective is to optimize the resources of the plat-
form; the coupled path-planning and resource management
problem, in the context of an optimal control framework,
is left as future work. This paper focuses solely upon
the optimization of the energy resources, where the path
followed is provided by a MILP solution. We consider the
same platform as in Section 3, where a generator charges
a battery pack and the battery pack provides power to the
electric-only motors.

A path
−→
H (t) = {x(t), y(t), z(t)} is given, from initial

time t0 to final time tf . The power consumption of the
motors T (t) is defined over the time interval [t0, tf ]. For
the problem studied here, this is assumed to be unchanging
as the path is pre-planned and only the generator control is
to be considered. The fuel level g(t) and battery state b(t)
are given at the initial time as g(t0) and b(t0) respectively.
The control input u(t) is generator throttle, determining
the amount of power produced by the generator to send to
the battery. The objective is to minimize fuel usage over
the path, while satisfying the noise restrictions. The state
space is defined as the fuel level and the battery state
of charge x(t) = (g(t), b(t))⊤, t ∈ [t0, tf ]. The system
dynamics, which describe the battery/generator system
are as follows:

ġ(t) = −u(t)ṁ(u(t))Ḡ (13)

ḃ(t) =
P (u(t), T (t))

V (b(t), P (u(t), T (t)))Cm
(14)

Here, ṁ(·) is a nonlinear function to give normalized fuel-
burn rate as a function of the generator throttle u(t),
and Ḡ is a conversion term to convert the u(t)ṁ(u(t))
term to fuel burn rate. Further, P (·) gives the net power
draw on the battery dependent on generator throttle, u(t),
and UAV motor load, T (t). Further, V (·) is a nonlinear
function for calculating battery voltage and is a function
of the control and net power draw on the battery. Here,
we consider the voltage to change with power load applied
and current battery state-of-charge (SOC). The model we
implement here for simulations is the ohmic-drop model
from Hu et al. (2012), and the model for ṁ(·) is from
Sarkan et al. (2019). Both are normalized to be used in
our OCP. The value Cm is the battery maximum SOC in
Coloumbs so that SOC in Coloumbs can be converted to
an SOC ∈ [0, 1]. The control of the system is the throttle
of the generator and is defined as u(t) ≥ 0 ∀t ∈ [t0, tf ].
The throttle u(t) is a non-negative function so that the



fuel level of the aircraft is away monotonically decreasing
as the dynamics in (13) suggest. The control and states
are constrained as follows:

0 ≤ u(t) ≤ Q(x(t), y(t), z(t)) ∀t ∈ [t0, tf ] (15)

Bmin ≤ b(t) ≤ Bmax ∀t ∈ [t0, tf ] (16)

0 ≤ g(t) ∀t ∈ [t0, tf ] (17)

b(tf ) ≥ Bf (18)

The constraints restrict the operation of the generator in
regions deemed as quiet zones. Q(x(t), y(t), z(t)) defines
the regions of space where the platform can run the
generator or not. Bmin is the minimum acceptable battery
state. Bmax is the maximum acceptable battery state. The
fuel level g(t). The minimum battery charge required at
the terminal location is given by Bf .

The objective, as described, is to minimize fuel consump-
tion – that is, we desire path plans which leverage the
battery/generator system so as to minimize the fuel usage.

min
u(t)

J(x(t), u(t), t) = Ḡ

∫ tf

t0

u(t) dt (19)

Equivalently, the objective of minimizing fuel usage over
the entire time as described in (19) may be formulated as
the maximizing the fuel level at final time or simply:

J(x(t), u(t), t) = −g(tf ) (20)

Due to the numerical complexity of solving this opti-
mal control problem, the direct optimal control approach
of even collocation is selected Betts (1998, 2010); Kelly
(2017); Kirk (2004). While the pseudospectral method and
adaptive meshing techniques serve as better surrogates for
performing direct optimal control; the task of implement-
ing such a method is left for future work. This paper uses
evenly-spaced collocation points and directly transcribes
the dynamics using the first-order Euler approximation.
This approach is very simple and for the sake of obtianing
waypoints is of suitable fidelity. The approach is sum-
marized in Fig. 1. The even collocation method (ECM)
is less sensitive to initial guess than shooting methods,
it doesn’t require the usage of an ordinary differential
equation (ODE) solver and in-general converges faster
than shooting methods Kelly (2017); Betts (1998, 2010).
The engineering trade-off is that the dynamics are not as
accurately preserved in ECM as provided in shooting, the
equations of motion forward in time using an ODE solver;
but, the added performance and reduced sensitivity to the
initial guesses are considerable advantages.

The even collocation method transcribes the dynamics
to a set of N collocation points evenly spaced in time.
The dynamics equations in (13) and (14) (represented
as ẋ = f(x(t), u(t), t) ) are those transcribed to a set of
equality constraints:

hk = xk+1 − xk − f(xk, uk, k)∆t, k = 1...N (21)

The objective cost is evaluated for the current guess of con-
trol and state and a check if the states satisfy the dynam-
ics, the objective is a local minimum, and the various path
constraints and equality constraints are satisfied. If the
constraints are satisfied and the objective is a local mini-
mum then the Karush-Kuhn-Tucker (KKT) conditions are
said to be satisfied and the optimal state and control is
produced. If, however, the constraints are not satisfied or
the objective is not at a local minimum, a nonlinear pro-
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Fig. 1. Hybrid path planning and resource management
algorithm

gram solver (in this case the interior point method IPOPT)
is used to update the guess for the states and the control
Wächter and Biegler (2006). The nonlinear program solver
IPOPT is called using the package, “JuMP” as provided
by Dunning et al. (2017), a mathematical programming
package for Julia language. JuMP, in combination with
the Ipopt.jl julia package allows an easy means of posing
the direct optimal control problem in the Julia Language
and provides an interface to IPOPT().

For a linear system one could use dynamic programming
to obtain the solution in a numerical way. We advocate
for using a nonlinear program solver to provide optimal
strategies when the battery models and generator system



Fig. 2. Time to Solve vs Number of Time Points

Fig. 3. Vehicle Trajectory

Fig. 4. Generator State and Noise Restrictions

are nonlinear. Furthermore, by solving for the optimal con-
trol using optimal control theory, the admissible throttle of
the generator is on a continuum rather than on/off – this
is more realistic and allows generator policies that aren’t
possible by only using MILP, seen in results.

5. SIMULATION RESULTS

All results presented here were obtained on a machine
running Windows 10 and an Intel i5-4670k processor. Julia
v1.8.5 was used, and IPOPT v3.14 was used to solve
the nonlinear programming problem, implementing even-

Fig. 5. Example Solution - Battery and Fuel Levels
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Fig. 6. OCP Cost Function vs Number of Time Points

collocation. The results of the MILP and the results of
the OCP are shown here. For tests shown here, a single
graph problem and solution is then formulated as an
OCP, to the end of minimal fuel usage, with a varying
number of time points. A single MILP solution was used
repeatedly to solve as an OCP, where only the number of
time discretizations within the OCP were changed. The
time-to-solve the OCP for varying time discretizations
is shown in Fig. 2. The graph instance that is used to
formulate the OCP is show in Fig. 3 along with an one
OCP generator policy solution. The color along the path
indicates generator throttle between 0 and 1. The battery
and fuel levels over time, from the same OCP solution as
the prior figure, is given in Fig. 5.

Of concern is quality of the generator policy between the
MILP solution and the OCP solution. Fig. 4 shows both
the MILP generator policy, used as the intial guess in the
OCP, and the one returned from the OCP. The MILP,
being a discrete formulation, can only consider a finite
number of generator control states. As the number of possi-
ble generator states increases, so does the branching factor,
which has a significant effect on the time complexity of
the problem. To limit this, the formulation and algorithm
presented in Scott et al. (2022) considers only on and off
states. It can be seen clearly in the figure that the optimal
control solution runs the generator at varying rates to the
end of higher efficiency. Higher generator throttle states
increase fuel-burn rate relative to charge provided to the
battery. This effect is seen in the OCP solution, where
prior to the first noise restricted zone, the generator runs
at 50%, however, the generator must run at higher throttle
before the second and third noise restricted zones to ensure
the battery is charged to be able to fly through these zones
on battery-power alone. Thus, the generator is able to run
in a higher-efficiency state (in terms of fuel burn with
respect to charge to battery) for longer periods of time, as



opposed to the “bursts” of maximum throttle that occur
in the MILP, which will result in a lower efficiency in terms
of fuel burn with respect to charge to battery.

A plot of the optimal objective costs for the OCPs with
varying number of time discretization is given in Fig.
6. Objective quality changes very little as time points
increase. Between and within noise-restricted zones, the
problem constraints do not change. Only at the edges
of switches between noise-restrictions does an increase
in time resolution offer an advantage, where the higher
resolution allows the switching between generator throttles
to occur closer to the true-optimal point. This would
indicate that pseudo-spectral methods, where the nodes
of time-discretizations are allowed to move, would offer an
advantage, and likely requiring a smaller number of time
points for the same solution quality.

6. CONCLUSIONS AND FUTURE WORK

This paper formulates the problem of controlling the fuel
source for a hybrid UAV for a provided path with noise
restrictions in the framework of optimal control problem.
This work serves as an initial study for a larger problem
where path planning and fuel decision are combined.
The noise-restrictions and energy constraints couple the
energy management and path planning problems. The
work presented here is intended to be extended to finding
the optimal path and generator policy in tandem as an
OCP, likely requiring more advanced solver techniques.
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