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In this work, a continuous monitoring scenario where multiple UAVs are tasked to monitor

a dynamic target moving along a path with unknown speed profile is addressed. Optimal

trajectories based on the nominal trajectory of the target are generated offline. If changes in

the speed profile of the target are detected, the agents’ trajectories can be modified online to

ensure that the monitoring requirements are met, while still maintaining inter-vehicle safety

guarantees. The time-coordination algorithm proposed as a solution to this problem is based

on a leader-follower structure. The UAVs are assumed to exchange information over a com-

munication network where limited quality of service, switching topologies and data package

dropouts are considered. Finally, performance bounds and simulation results to prove the

efficacy of our method are provided.

I. Introduction
Multi-vehicle missions have increasingly gained popularity in the last few decades for both civil and military

applications because of their many advantages. The deployment of multiple agents can be particularly useful in

applications that require the coverage of large areas such as in surveillance missions [1–3]; environmental monitoring

[4–6]; and sweeping tasks [7]. Often, such tasks cannot be performed by stationary agents given the changing nature of

the environment. Instead, it is preferred to deploy teams of unmanned vehicles that work cooperatively to monitor the

desired target or area. In the literature, this cooperative approach is often referred to as monitoring [8, 9].

In this work, we address a continuous monitoring scenario where multiple Unmanned Aerial Vehicles (UAVs) are

tasked to monitor a target travelling with an unknown speed along a known predefined path. Specifically, the agents are
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equipped with sensors fixed to their body and the mission requires the target to be within the sensing footprint of at least

one UAV at all times. Due to limitations on the range of the sensors, this is satisfied by requiring the agents to fly over

the target at specific times. Furthermore, the agents are required to coordinate in order to guarantee inter-vehicle safety

and successful completion of the monitoring mission while adhering to feasibility constraints such as minimum and

maximum speed and angular rates.

In terms of previous work, many approaches to monitoring and surveillance-like missions can be found in the

literature. In [10], a scenario where multiple vehicles are required to visit a set of discrete locations is considered. The

authors formulate their solution as a vehicle routing problem with time windows. In [11], the authors propose a solution

to a similar problem by implementing a routing algorithm for persistent monitoring of targets with weighted revisit

priorities. In [12, 13], the authors formulate an optimal control problem to minimize the cumulative uncertainty of the

sensing points. In [12], the persistent monitoring problem is addressed for a one-dimensional space, whereas in [13],

the same approach is extended to a two-dimensional space. In [14], the authors propose a method to patrol an area with

the presence of static targets while driving the uncertainty of the targets to zero.

The presence of dynamic targets poses an extra challenge, because it is necessary to detect if the target is deviating

from its nominal trajectory and adjust the agents’ trajectories accordingly. Existing solutions to this problem are based

on closed-loop controllers and allow the agent to react in real time to stochastic behaviour of the target [15, 16]. In

[15, 16], for example, the authors propose an optimal feedback controller to track a Brownian target where the agent is

modeled as Dubins vehicle. These closed-loop approaches have several advantages, including obstacle avoidance and

computational efficiency. Nevertheless, they can be too conservative when dealing with complex mission scenarios,

such as nonconvex problems, multi-agent missions where inter-vehicle safety measures need to be guaranteed, or in

the presence of nonlinear vehicle dynamics. To address these issues, the monitoring problem can be formulated as a

constrained nonlinear optimal control, that can be solved in an open-loop fashion using numerical methods [17–19]. The

main advantages include: (8) complex constraints such as inter-vehicle safety, feasibility and flyability of the trajectory,

and nonlinear vehicle dynamics can be taken into account; (88) the open-loop approach enhances human operator trust

through transparent and predictable operations, since the solution is generated in one shot for a long temporal window.

The main drawback to the sole use of open-loop numerical techniques for the solution of optimal control problems

lies in the fact that replanning trajectories is computationally expensive and may require a substantial amount of time.

For monitoring applications, this can be undesirable because the target may frequently change its speed as a defense

technique and, therefore, it may result in loss of performance.

To address the limitations mentioned above, we introduce a hybrid solution. We decouple the continuous monitoring

problem into an offline optimal trajectory generation and a time-coordination algorithm for online trajectory adjustment.

Our approach departs from previous methods in the sense that an optimal motion planner is exclusively utilized before

the beginning of the mission to generate trajectories based on the nominal knowledge of the trajectory of the target.
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During the mission, the UAVs can cooperatively adjust their trajectory online to take into account bounded variations in

the speed profile of the target. In doing so, they can avoid replanning their trajectories while still being able to track

their target.

Building up from previous work [20–23], we focus on the time-coordination algorithm for online trajectories

adjustment. In [20], the authors propose an algorithm that requires the vehicles to coordinate according to a common

temporal objective established at the beginning of the mission, whereas in [21, 22] the temporal objective can be

modified during the mission to satisfy mission requirements, e.g., collision avoidance. These algorithms are based

on mild assumptions on the communication network and take into account communication dropouts and switching

topologies. Extending the work presented in [23], we propose a time-coordination algorithm based on a leader-follower

structure. This choice was motivated by the fact that, conversely to the methods mentioned above, our approach requires

only a subset of vehicles, the mission leaders (or virtual leaders), to have the necessary equipment to detect the position

of the target along a path. Then, persistent monitoring by the fleet is enabled by means of communication of limited

information among the vehicles. This assumption allows more flexibility in terms of hardware and sensors needed

on-board the followers, which is more realistic, and it allows a decrease in the overall costs of the mission. For example,

this method can be useful in scenarios where one leader can detect the position of the target using radar’s measurements,

while the followers are equipped with only a camera for monitoring the target.

This paper is organized as follows: the cooperative framework that motivates the continuous monitoring problem

of this paper is discussed in Section II. The mathematical formulation of the problem itself is provided in Section III.

Section IV presents the main result and the continuous monitoring algorithm is presented in Section V. Finally, a

demonstration of the efficacy of the algorithm is provided in Section VI. Conclusions are included in Section VII.

II. Cooperative Control Framework
The cooperative control framework this work is based on includes (8) a trajectory generation algorithm for the offline

planning of optimal trajectories [24–26]; (88) a virtual target tracking algorithm that ensures the vehicles are able to

follow their desired trajectories [27, 28]; and (888) a time-coordination algorithm that indirectly adjusts the speed of

the vehicles online to guarantee coordination and satisfaction of the mission requirements. The cooperative control

framework is shown is Figure 1. In this work, the focus is on time-coordination, but for the sake of completeness, we

briefly introduce the trajectory generation and virtual target tracking algorithms.

Note that for the rest of this paper, we denote vectors with bold letters (e.g., x = [G1, G2, . . . , G=] ∈ R=), matrices

with uppercase letters (e.g., �) and | | · | | denotes the Euclidean two-norm or magnitude (e.g. ‖x‖ =
√
G2

1 + G
2
2 + . . . + G

2
=)

. Furthermore, p8 (C) indicates the nominal trajectory of the 8th vehicle, whereas p̂8 (C) refers to the actual trajectory of

the 8th vehicle.
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Fig. 1 Cooperative Control Framework.

A. Trajectory Generation

At the motion planning level, trajectory generation is formulated as an optimal control problem. The objective is to

generate trajectories for the vehicles that satisfy safety constraints, boundary conditions, feasible constraints and mission

specific constraints.

For safety constraints, minimum temporal separation requirements are enforced to generate collision-free trajectories.

Specifically, the trajectories are generated such that the following holds:

| |p8 (C) − p 9 (C) | | ≥ 3safe, ∀ C ∈ R, 8, 9 ∈ {1, .., =}, 8 ≠ 9 . (1)

Boundary conditions include the initial and final position and initial and final heading angle. The feasible constraints

concern minimum and maximum velocity and angular rate saturation limits. Finally, the mission specific constraints

depend on the mission under consideration, namely continuous monitoring. To accomplish the mission, the vehicles are

required to sequentially intercept the target at constant time samples Δ , i.e.

| |p8 (8Δ) − pC (8Δ) | | ≤ n, 8 ∈ {1, .., =}, (2)

where p8 (8Δ) and pC (8Δ) are the positions of the 8th vehicle and target, respectively, at C = 8Δ , and n is a relaxation

bound. We note that intercepting means that the 8th vehicle is flying over the target. Furthermore, with this formulation

each vehicle intercepts the target once at its corresponding time sample. For missions with long time horizons or

extending over large areas, the vehicles may be required to intercept the target multiple times to ensure that it is still

within their sensor footprint. For these cases, a trajectory replan can be triggered to extend the original trajectories.

The optimal trajectories are generated in 2 dimensions; the altitude of the vehicles is controlled separately.

Furthermore, to avoid detection or defensive maneuvers, the vehicles are required to approach the target at a random

heading angle

k8 (8Δ) = \8 , 8 ∈ {1, 2, . . . , =},
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Fig. 2 Persistent monitoring scenario in which target detection is performed by three UAVs.

where k8 (8Δ) is the heading angle of the 8th vehicle at C = 8Δ , and \8 is a uniformly randomly generated angle. Figure 2

illustrates the objectives of the continuous monitoring mission. Each of the UAVs, shown in blue, green and yellow,

intercept the trajectory of the target, shown in red. Furthermore, the vehicles approach the target at different heading

angles.

The trajectory generation problem can be stated as follows:

Problem 1 Consider a mission involving = vehicles. Compute a set of = feasible trajectories p8 (C) : [0, Cf] → R2,

8 = 1, 2, . . . , =, that minimize a given cost function � and satisfy the vehicles’ dynamic constraints, safety constraints,

boundary conditions, feasible constraints, and mission specific constraints, i.e,

min

x(C)=[G1 (C) , · · · ,G= (C) ])

u(C)=[D1 (C) , · · · ,D= (C) ])

� (x(t), u(t))

subject to

¤x8 (C) = f(x8 (C), u8 (C)),

p8 (C) = g(x8 (C)),

Dmin ≤ ||u8 (C) | | ≤ Dmax,

p8 (0) = p8,0,

p8 (C 5 ) = p8,C 5 ,

k8 (0) = k8,0,

k8 (C 5 ) = k8,C 5 ,

| |p8 (C) − p 9 (C) | | ≥ 3safe,

| |p8 (8Δ) − pC (8Δ) | | = n,

k8 (8Δ) = \8 ,
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for all 8, 9 ∈ {1, 2, . . . , =}, 8 ≠ 9 .

To solve the above problem, we adopt the approach presented in [29]. We approximate the states of the vehicles and

the inputs by #th order Bernstein polynomials as follows:

G8 (C) ≈
#∑
9=0
Ḡ
[ 9 ]
8
1 9 ,# (C), D8 (C) ≈

#∑
8=0

D̄
[ 9 ]
8
1 9 ,# (C),

where Ḡ [ 9 ]
8

and D̄ [ 9 ]
8

, 9 ∈ {0, . . . , #}, are polynomial coefficients, and 1 9 ,# (C) are Bernstein polynomial basis functions.

This approximation allows us to rewrite the functionals involved in Problem 1 as a set of algebraic constraints, dependent

on the new optimization variables, namely a finite set of polynomial coefficients. Thus, the optimal control problem

given above can be reformulated as a finite dimensional optimization problem, which can be solved using off-the-shelf

optimization solvers (e.g., Matlab fmincon). The output of the algorithm is a set of optimal coefficients Ḡ [0]
8
, . . . , Ḡ

[# ]
8

,

D̄
[0]
8
, . . . , D̄

[# ]
8

, which give the optimal polynomial trajectory

?8 (C) =
#∑
9=0
6(Ḡ [ 9 ]

8
)1 9 ,# (C).

Further details on this method can be found at [29].

B. Virtual Target Tracking Algorithm

Let p8 (C) be the trajectory of the 8th vehicle given by the trajectory generation algorithm. Moreover, let the virtual

time W(C) be a temporal variable

W8 : R+ → [0, C 5 ] , ∀ 8 = 1 , ... , = , C ≥ 0. (3)

Then, let the vehicles’ trajectories be reparameterized in terms of the virtual time, i.e., p8 (W8 (C)). For clarity, we refer

to p8 (W8 (C)) as the virtual target to be tracked by the 8th UAV. With this formulation, the virtual time W8 (C) indirectly

represents the progression of the 8th vehicle along its planned trajectory. Furthermore, its derivative ¤W8 (C) indicates the

pace of the mission of the 8th vehicle.

Conversely to the clock time C, the virtual time is a quantity that can be stretched or compressed. We note that

¤W(C) = 1 implies that the mission is progressing at the pace that was originally planned at the trajectory generation level,

i.e., p8 (W8 (C)) = p8 (C); ¤W(C) ≥ 1 ( ¤W(C) ≤ 1) implies a faster (slower) execution of the mission. Later it will be shown that

W(C) and ¤W(C) play a key role in the execution of the mission as they are used by the time-coordination and continuous

monitoring algorithms to indirectly adjust the speed of the vehicles. Therefore, the vehicles’ trajectories are feasible if
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they solve Problem 1 and if the following bounds hold:

1 − ¤W8,max ≤ ¤W8 (C) ≤ 1 + ¤W8,max, (4)

| ¥W8 (C) | ≤ ¥W8,max (5)

with 0 < ¤W8,max < 1 and ¥W8,max > 0.

Finally, the virtual target tracking problem can be stated as follows.

Problem 2 Consider = trajectories p1 (W1 (C)), . . . , p= (W= (C)) that solve Problem 1 with virtual times W1 (C), . . . , W= (C)

satisfying Equations (4) and (5). Let the virtual target tracking error for vehicle 8, namely x%�,8 (C), be defined as the

difference between the desired and actual position of the 8th vehicle, i.e.,

x%�,8 (C) = p8 (W8 (C)) − p̂8 (C),

where p̂8 (C) is the actual position of the 8th vehicle at time C. Then, design a control law for the vehicle control inputs

such that x%�,8 (C) converges to a neighborhood of 0.

We emphasize that safety and feasibility constraints are first imposed at the motion planning level. Then, the bounds

in Equations (4) and (5) guarantee that the virtual targets, i.e., p1 (W1 (C)), . . . , p= (W= (C)), can be tracked by the vehicles

using some trajectory tracking or path following algorithm for fixed-wing UAVs. As an example, we refer the reader to

[30].

III. Time Coordination Algorithm - Problem Formulation
As mentioned in the previous section, a trajectory generation algorithm is adopted to create feasible paths.

Furthermore, a virtual target tracking algorithm is enabled to allow the vehicles to follow their desired trajectories.

Finally, the proposed time-coordination algorithm is applied to guarantee coordination and inter-vehicle safety. In this

section, we first introduce the necessary variables and then we formally state the time-coordination problem.

Recall that at the motion planning level, trajectories are generated such that temporal separation requirements are

met (see Equation (1)). Furthermore, recall that the trajectories are reparameterized in terms of the virtual time W(C),

i.e., p8 (W8 (C)). Notice that if W8 (C) = W 9 (C) ∀8, 9 ∈ {1, ..., =}, 8 ≠ 9 , then inter-vehicle safety is guaranteed throughout

the mission. In other words, if coordination is achieved, then inter-vehicle safety is ensured. Moreover, to satisfy the

requirements given by the monitoring scenario, ¤W8 (C) must converge to ¤W3 (C), where the latter is the desired pace of the

mission required to successfully intercept the target. For our purposes, ¤W3 (C) is a coordination parameter that can be
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adjusted online to react to bounded variations in the speed profile of the target. As it was mentioned previously, it is

more realistic to assume that only a subset of the agents is capable of detecting the position of the target. Therefore

¤W3 (C) is computed by the leaders based on the virtual time of the target, WC (C). The latter can be calculated as

WC (C) = [C (ℓ′C ),

where ℓ′C is the normalized curvilinear abscissa of the target at time C and [C is a strictly increasing function. Then, ¤W3 (C)

acts as a reference for the followers which, as it will be clear later, ensures that the monitoring objectives are met by all

vehicles. For more details on how WC (C) is calculated, see Section II.B of [28].

Remark 1 In this work, we assume that the leaders are always able to detect the position of the target and can compute

the virtual time of the target in real time.

Finally, the time-coordination objectives can be stated as follows:

W8 (C) = W 9 (C), ∀ 8, 9 ∈ {1, .., =}, 8 ≠ 9 , (6)

¤W8 (C) = ¤W3 (C), ∀ 8 ∈ {1, .., =}. (7)

We note that because ¤W3 (C) is not known by the followers, the objective of the time-coordination algorithm is to ensure

that Equations (6) and (7) are satisfied for all vehicles.

To achieve the time-coordination objectives, the communication system plays a key role. Using graph theory, we

can model the communication network through which the agents can communicate. Specifically, let ! (C) ∈ R=×= be the

Laplacian matrix for the time-varying communication graph Γ(C) [31] and recall that Γ(C) is connected if and only if the

second smallest eigenvalue, also known as the Fiedler value of ! (C), is strictly positive. Moreover, let & ∈ R(=−1)×= be

a matrix that satisfies the following:

&1n = 0 , &&> = �=−1 , &>& = �= −
1
#

1n1>n , (8)

Remark 2 An iterative procedure to compute the matrix & is presented in [27].

Let !̄ (C) = &! (C)&>. Here !̄ (C) is a matrix with the same eigenvalues as the Laplacian matrix, with the exception of

the first eigenvalue of ! (C), _1 = 0, which is the eigenvalue associated with the eigenvector 1n. In other words, the

smallest eigenvalue of !̄ (C) is the Fiedler value of ! (C), i.e., _1 ( !̄ (C)) = _2 (! (C)). Then, it can be easily seen that the

communication graph Γ(C) is connected at time C if !̄ (C) is positive definite. We note that this formulation highlights
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the dependency of the graph’s connectivity on the Fiedler value. In contrast, the following is assumed in terms of the

communication graph:

1) The 8th vehicle can only communicate with neighboring set of vehicles, here referred to as N8 (C).

2) The communication between the vehicles is bidirectional and with no time delays.

3) The connectivity of the communication graph Γ(C) satisfies a persistency of excitation (PE)-like condition [32]:

1
=)

∫ C+)

C

!̄ (g)3g ≥ `�=−1, C ∈ [0,∞), (9)

with ) > 0 and ` = (0, 1].

Notice that ` ∈ (0, 1] follows from the fact that | | !̄ | | ≤ =. The connectivity assumption presented in Equation (9)

requires the graph to be connected in a integral sense and thus it captures communication dropouts and switching

topologies.

Finally, the time-coordination objectives presented in Equations (6) and (7) can be recast into the time-coordination

error vector as follows:

xTC (C) =


/ (C)

z(C)

 , (10)

where

/ (C) = &$(C), (11)

z(C) = ¤$(C) − ¤W3 (C)1n, (12)

with $(C) = [W1 (C), . . . W= (C)]>, ¤$(C) = [ ¤W1 (C), . . . ¤W= (C)]>.

Then, the objective of the time-coordination algorithm is to design control laws for ¥W8 (C) such that the time-

coordination error vector converges to a neighborhood of 0, which in turn implies that Equations (6) and (7) are not

violated.

Remark 3 According to the properties of matrix Q, / (C) = 0 implies W8 (C) = W 9 (C), 8 ≠ 9 (see Equation (8)), while

z(C) = 0 indicates that ¤W8 (C) = ¤W3 (C).

Finally, the time-coordination problem for the fleet of vehicles can be stated as follows.
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Problem 3 Consider a cooperative mission where = UAVs are tasked to coordinate along nominal trajectories that

satisfy Problem 1, and are equipped with a virtual target tracking algorithm that satisfies Problem 2. Let the vehicles

communicate through a network that satisfies the condition in Equation (9), and that the desired pace of the mission

¤W3 (C) is known to a subset of =; < = vehicles elected as leaders. Then, the objective of the time-coordination algorithm

is to design a control law such that the time-coordination error vector converges to 0 (see Remark 3) and such that

inequalities (4) and (5) are not violated.

IV. Time Coordination - Main Results
To solve Problem 3, let ¥W8 (C) be governed by

¥W8 (C) = −1 ( ¤W8 (C) − ¤W3 (C)) − 0
∑

9∈N8 (C)
(W8 (C) − W 9 (C)),

∀8 ∈ {1, . . . , =;},

¥W8 (C) = −1
(
¤W8 (C) − j� ,8 (C)

)
− 0

∑
9∈N8 (C)

(W8 (C) − W 9 (C)),

¤j� ,8 (C) = −:
∑

9∈N8 (C)
(W8 (C) − W 9 (C)), ∀8 ∈ {=; + 1, . . . , =},

(13)

W8 (0) = 0, ¤W8 (0) = 1, j� ,8 (0) = 1,

which can be written in matrix form as

¥$(C) = −0!$(C) − 1


�> ¤$(C) − ¤W3 (C)1nl

�> ¤$(C) − 6O (C)

 ,
¤6O (C) = −:�>!$(C),

(14)

$(0) = 0n, ¤$(0) = 1n, 6O (0) = 1n−nl ,

where

�> =

[
0 �=−=;

]
, (15)

�> =

[
�=; 0

]
, (16)
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and 0, 1 and : are positive coordination control gains. ¤W3 (C) is a desired mission pace satisfying

1 − ¤W3,max ≤ ¤W3 (C) ≤ 1 + ¤W3,max, (17)

| ¥W3 (C) | ≤ ¥W3,max, (18)

for some ¤W3,max > 0 and ¥W3,max > 0. The control laws shown in Equation (13) are designed such that ¤W8 (C) − ¤W3 (C) ≈ 0

and W8 (C) − W 9 (C) ≈ 0. Then, using the properties of matrix Q, see Equation (8), it can be shown that this implies that the

time-coordination error vector also converges to a neighborhood of 0, thus satisfying the time-coordination objectives

presented in (6) and (7). Recall that the coordination parameter ¤W3 (C) is known only by the leaders. Therefore, the

term 6O (C) represents the pace of the mission for the followers and it is used to guarantee that the time-coordination

objectives are satisfied for all vehicles.

Theorem 1 Consider a cooperative mission involving = UAVs, where =; vehicles are elected as leaders and = − =; are

followers. Let the vehicles be equipped with a trajectory generation algorithm that solves Problem 1 and a virtual

target tracking algorithm that solves Problem 2. Assume that the vehicles are able to communicate through a network

satisfying Equation (9), and that ¤W3 (C) is known by the leaders only. Finally, let ¥W8 (C) be governed by the control law

presented in (14), and the time-coordination error vector xTC (C) at time C = 0, and the dynamic limits of the desired

mission pace satisfy

¤W3,max < ¤W8,max , (19)

and

max
{
‖G)� (0)‖, ¥W3,max

}
< min

{ ¤W8,max − ¤W3,max

^1 + ^2
,

¥W8,max

31^1 + 31^2 + 1

}
, (20)

for given ¤W8,max, ¥W8,max > 0 and for some positive constants ^1 and ^2. Then, there exist time coordination control gains

0, 1 and : such that the time-coordination error vector is bounded by

| |xZI (C) | | ≤^1 | |xZI (0) | |4−_)� C + ^2 sup
C≥0
( | ¥W3 (C) |), (21)

with rate of convergence satisfying

_)� <
=;

=

1
41

`

)
(
1 + 0

1
=)

)2 ,

and such that the feasibility bounds introduced in Equations (4) and (5) are never violated.

Remark 4 We note that in a more physical sense, inequality (19) states that the maximum speed of the agents must

be greater than the maximum speed of the target. As it will be made clear in the next section, this is due to the fact
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that ¤W3 (C) directly depends on the virtual time of the target. Instead, inequality (20) provides an upper bound for the

time-coordination error at time C = 0.

Proof: The proof of Theorem 1 is provided in Appendix B.

V. Continuous Monitoring Algorithm
Theorem 1 shows that if coordination is achieved, then Equation (7) is satisfied. Furthermore, recall that by virtue

of the trajectory generation and virtual target tracking algorithms, the monitoring objectives are met if the following

condition is satisfied (see Equation (2)):

W8 (C) = WC (C), ∀8 ∈ {1, .., =}. (22)

As it was mentioned in Section III, we assume that only a subset of vehicles, the mission leaders, are able to

continuously detect the virtual time of the target, WC (C). Then, the objective of the continuous monitoring algorithm

is to design a control law for ¤W3 (C) such that satisfaction of Equation (22) is ensured for all agents (both leaders and

followers).

To this end, we propose

¤W3 (C) = 1+: ? (W8 (C) − WC (C)) + :8
∫ C

0
(W8 (g) − WC (g))3g,

∀8 ∈ {1, . . . , =;}.
(23)

where : ? and :8 are control gains and WC (C) is the virtual time of the target.

Then, the following result holds.

Theorem 2 Let the evolution of ¤W3 (C) be governed by the control law proposed in Equation (23). Then, if the

assumptions of Theorem 1 hold, we have

W8 (C) → WC (C), ∀8 ∈ {1, . . . , =}. (24)

Proof: The proof of Theorem 2 follows directly by substituting Equation (23) into Equation (13) and following similar

steps as the proof of Theorem 1.

Remark 5 We note that when the target is moving with nominal speed and the vehicles are coordinated with the target,
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then ¤W3 (C) = 1, which in turn implies that the vehicles are progressing at the rate that was originally established at the

trajectory generation level. In other words, ¤W3 (C) = 1 implies that the virtual times progress identically to clock time.

Remark 6 To achieve coordination, the control law presented in Equation (23) needs to ensure that the bounds in (17)

and (18) are satisfied. This, in turn, can be guaranteed by imposing further bounds on the initial conditions of the

time-coordination error vector and on the target’s speed. This can be seen by the fact that ¥W3(t), which can be obtained

by differentiating Equation (23), depends directly on the speed of the target.

Remark 7 We note that with this formulation, the target tracking controller needs only limited knowledge about the

target. In fact, the vehicles need to capture only the value of the target’s virtual time, which can be computed from the

target’s position. Thus, information on the target’s dynamics, such as speed and acceleration is not required. Moreover,

we emphasize that the leaders only need to acquire information about the target. The followers are able to satisfy the

target tracking requirement by means of communication with the neighboring vehicles.

VI. Numerical Results
To prove the efficacy of our method, we present the results obtained from the simulation of a monitoring mission

involving 1 target and 3 UAVs. For this scenario, the final mission time is Cf = 150 s and vehicle 3 (shown in yellow) is

the leader, while the other agents act as followers (shown in green and blue).

The vehicles are modeled as Dubin’s cars and their trajectories are generated offline solving an optimal control

problem that satisfies the constraints of Problem 1. The optimal control problem was implemented in MATLAB and

run on a Lenovo ThinkPad with Intel Core i7-8550U, 1.80GHz CPU. The computational time with this set-up was

approximately 2 s. The nominal trajectory of the target is known, therefore the trajectories are generated such that the

UAVs will intercept the target at time intervals Δ = 50 s (see Equation (2)). Furthermore, the trajectories guarantee that

a minimum safe distance 3safe = 1.5 m is maintained among the vehicles at all time (see Equation (1)). The nominal

vehicle trajectories are shown in Figure 3. We note that these trajectories are planned such that each agent intercepts

the target once, where intercepting signifies that the 8th vehicle is positioned above the target (see Equation (2)). For

the sake of simplicity, in this simulation we focus on a scenario where each agent needs to intercept the target once.

However, it can be shown that the coordination results hold for more complex missions. Finally, let the vehicles be

equipped with an on-board virtual target tracking algorithm that satisfies Problem 2, with ¤W8,<0G = 0.3 and ¥W8,<0G = 0.1,

and the time-coordination algorithm presented in Equation (14) where 0 = 1.75, 1 = 4.25, : = 0.6, ¤W3,<0G = 0.25 and

¥W3,<0G = 0.1.
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Fig. 3 Target trajectory, shown in red, and agents’ trajectories, shown in yellow, blue and green, at three time
instances corresponding to target intercept by one of the agents.

(a) (b)

Fig. 4 Speed profile of the target and the leader (left), and speed profile of vehicle 1 and 2 (right). The dotted
lines represent the nominal speed of the vehicles; the solid lines show the actual speed of the vehicles.

At the beginning of the mission, the target is following its known nominal trajectory, i.e., ¤WC (C) = 1. However, at

C = 70 s, the target starts speeding up. In turn, by virtue of the PI controller proposed in Equation (23), the desired pace

of the mission increases. This implies that the vehicles speed up in order to continue their monitoring task. Figure 4

shows the speed profile of the target and of the vehicles. In Figure 4a, it can be seen that as the target’s speed increases,

the leader also increases its speed. Figure 4b shows the speed profile of the followers; the followers also adjust their

speed by virtue of the time-coordination algorithm.

The latter ensures that both the leader and the followers are able to adjust their pace accordingly (and their speed as

a result), i.e., ¤W1 (C) = ¤W2 (C) = ¤W3 (C) = ¤W3 (C), as can be seen in Figure 5a. Figure 5b shows the evolution of the virtual

time. It can be seen that there is an initial time-coordination error, but by virtue of the time-coordination algorithm, the

vehicles are able to coordinate after approximately 5 s as it is shown in Figure 5c. We also note that at C = 70 s, when

the desired pace of the mission is changed, an error in the virtual time of the leader and the followers can be noticed.

However, by virtue of the time-coordination algorithm, the vehicles are able to maintain coordination.

Figure 6 shows the evolution of the mission. The light circles represent the nominal position of the vehicles. It can

be seen that without the use of the time-coordination algorithm, if the target changes its speed, the vehicles would not be

14



(a) (b) (c)

Fig. 5 Evolution of the pace of the mission (left), virtual time (center), and coordination error (right).

Fig. 6 Target trajectory, shown in red, and agents’ trajectories, shown in yellow, blue and green, at three time
instances. The nominal positions of the vehicles are shown in a lighter shade of the color.

able to intercept it. Instead, the proposed algorithm ensures that all the agents are able to adjust their speed to complete

the mission. Figure 7 shows the magnitude of the virtual target tracking error. Despite an initial error, the vehicles

converge to their desired position. Finally, we note that by achieving coordination, the vehicles are able to maintain the

minimum safety distance that was planned at the trajectory generation level, as it can be seen in Figure 8.

VII. Conclusions
In this paper, the problem of monitoring continuously a target with unknown speed is presented. The problem is

decoupled as an offline optimal trajectory generation problem and an online trajectory adjustment. Optimal trajectories

are generated to satisfy mission requirements and dynamic and boundary constraints. Then, the nominal vehicles’

trajectories can be modified online through the use of a time-coordination algorithm. This algorithm ensures that

coordination and continuous target monitoring are achieved. Finally, performance bounds and simulations results are

provided to demonstrate the efficacy of the algorithm. In particular, it is shown how the proposed framework can be

deployed to enable a team of fixed-wing UAVs to monitor a ground target moving along a known constrained path with

unknown speed. The vehicles are able to adjust their speed online in order to satisfy the temporal requirements of the

target monitoring missions, even when information about target’s speed is available to a subset of UAVs only. Ongoing

15



Fig. 7 Evolution of the magnitude of the virtual target tracking error.

Fig. 8 Distances between the vehicles shown as solid blue, green and yellow lines. The minimum safe distance
is shown as a solid red line.

and future work includes effort in nonlinear optimization to enhance the computational efficiency of the trajectory

planning algorithm, as well as the implementation of the proposed algorithms on fixed-wing UAVs for real-world testing.
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A. Proof of Time-Coordination Dynamics
Consider the following time-coordination states redefined using the definitions given in (8), (15) and (16):

x̄ZI = [6>, z>, '>]> ,

where



z = ¤$ − ¤W31n

6 = 1/ +&z

' = 6O − ¤W31n−nl − :
0
�>&>6

(25)

and

¤6O = −:�>!$. (26)
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Then, the time-coordination control law can be rewritten as

¥$ = −0!$ − 1


�> ¤$ − ¤W31nl

�> ¤$ − 6O

 = −0!&
>&6 − 1


�> ¤$ − ¤W31nl

�> ¤$ − 6O + ¤W31n−nl − ¤W31n−nl


= −0!&>&6 − 1


�> ¤$ − ¤W31nl

�> ¤$ − ' − :
0
�>&>6 − ¤W31n−nl

 = −
0

1
!&>6 + 0

1
!&>&z − 1z + 1�' + :1

0
��>&>6.

(27)

Using (25), the time derivative of j is

¤6 = 1& ¤$ +&( ¥$ − ¥W31n).

Recalling the properties of matrix &, the equation above can be simplified to

¤6 = 1& ¤$ +& ¥$.

Using (27), it follows that

¤6 = −0
1
!̄6 + 1:

0
&��>&>6 + 0

1
!̄&z + 1&�' .

A similar approach is used to derive the dynamics of I and Z . Using (25) and straightforward computations, we

obtain

¤z = − (1� − 0
1
!)z − 0

1
!&>6 + 1:

0
��>&>6 + 1�' − ¥W31n .

Using (25) and (26), we obtain

¤' = − :�>!&>
(

1
1
6 − 1

1
&z

)
− ¥W31n−nl −

:

0
�>&> ¤6.

The dynamics of Z can be written as

¤' = − :1
0
�>&>&�' − 1:

2

02 �
>&>&��>&>6 − ¥W31n−nl .

Thus, the dynamics presented in (30) are derived.
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B. Proof of Theorem 1
First, consider the following system:

¤q(C) = −0
1
!̄q(C) , (28)

where the matrix !̄ satisfies the condition of Equation (9). From [33, Lemma 5] it follows that (28) is globally uniformly

exponentially stable, and that the following bound holds:

| |q(C) | | ≤ :_ | |q(0) | |4−W_C ,

with :_ = 1 and W_ ≥ W̄_ =
0
1

=`

) (1+ 0
1
=) )2 . Using [34, Theorem 4.14], it follows that there exists a continuously

differentiable, symmetric, positive definite matrix %(C) that satisfies the inequalities:

0 < 2̄1� ,
2̄3
2=
� ≤ %(C) ≤ 2̄4

2W_
� , 2̄2�,

¤% − 0
1
!̄% − 0

1
%!̄ ≤ −2̄3� .

(29)

Recall the time-coordination states derived in Appendix A

6 = 1/ +&z,

z = ¤$ − ¤W31n,

' = 6O − ¤W31n−nl −
:

0
�>&>6,

with dynamics given by:



¤6 = − 0
1
!̄6 + 1:

0
&��>&>6 + 0

1
!̄&z + 1&�' ,

¤z = −(1� − 0
1
!)z − 0

1
!&>6 + 1:

0
��>&>6 + 1�' − ¥W31n,

¤' = − :1
0
�>&>&�' − 1:2

02 �
>&>&��>&>6 − ¥W31n−nl .

(30)

Consider the following Lyapunov candidate function:

+ = 6>%6 + V
2
z>z + 0

2

:2 '
>

(
�>&>�&

)−1
' = x̄ZI

>, x̄ZI , (31)

21



where V > 0, % was introduced above, and

, =



% 0 0

0 V

2 � 0

0 0 02

:2 (�>&>�&)−1


.

Using (30), the time derivative of (31) can be computed to yield:

¤+ = 6>%

(
−0
1
!̄6 + 1:

0
&��>&>6 + 0

1
!̄&z + 1&�'

)
+

(
− 0
1
6> !̄ + 1:

0
6>&��>&> + 0

1
z> !̄&>

+ 1'>�>&>
)
%6 + 6> ¤%6 + Vz>

(
−

(
1� − 0

1
!

)
z − 0

1
!&>6 + 1:

0
��>&>6 + 1�' − ¥W31n

)
+ 0

2

:2

(
− :1
0
'>�>&>&� − 1:

2

02 6>&��>&>&� − 1n−nl
> ¥W3

)
(�>&>&�)−1'

+ 0
2

:2 '
> (�>&>&�)−1

(
− :1
0
�>&>&�' − 1:

2

02 �
>&>&��>&>6 − ¥W31n−nl

)
.

Finally, using the fact that | |! | | ≤ # and _<8= (�>&>&�) = #!
#
, the above inequality implies

¤+ ≤6>
(
¤% − 0

1
%!̄ − 0

1
!̄% + 2

:1

0
&��>&>%

)
6 − Vz>

(
1� − 0

1
!

)
z − 0

2

:2 '
>

(
2
:1

0

)
'

+
(
2
0

1
=| |% | | + V :1

0
+ V 0

1
=

)
| |6 | | | |z | | +

(
21 | |% | | + 21

)
| |6 | | | |z | | + V1 | |z | | | |' | |

+
(
V
√
= + 2

02

:2
√
= − =;

=;

=

)
| |x̄ZI | | | ¥W3 |.

Using (29), and after straightforward computations, we obtain:

¤+ ≤ −
(
2̄3 − 2

1:

0
2̄2

)
| |6 | |2 − V

(
1 − 0

1
=

)
| |z | |2 − 2

10

:
| |' | |2 +

(
2
0

1
=2̄2 + V

:1

0
+ V 0

1
=

)
| |6 | | | |z | |

+ (212̄2 + 21) | |6 | | | |' | | + V1 | |z | | | |' | | + [ | |x̄ZI | | | ¥W3 (C) |,

where [ = V
√
= + 2 02

:2
√
= − =; =;= . Finally, using 2̄2 =

2̄4
2W̄_ , letting 2̄4 = 2̄3, we get

¤+ ≤ −
(
2̄3 − 2

1:

0

2̄3
W_

)
| |6 | |2 − V

(
1 − 0

1
=

)
| |z | |2 − 2

:1

0
| |' | |2 +

(
0=2̄3
1W_

+ V :1
0
+ V 0

1
=

)
| |6 | | | |z | |

+
(
12̄3
W_
+ 21

)
| |6 | | | |' | | + V1 | |z | | | |' | | + [ | |x̄ZI | | | ¥W3 |,

which can be written in matrix form as

¤+ ≤ −x̄ZI
>" x̄ZI + [ | |x̄ZI | | | ¥W3 |,
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with

" =



2̄3 − 1:
0

2̄3
W̄_

−
(
0
1

=2̄3
W̄_
+ V :1

0
+ V 0

1
=

)
−

(
12̄3
W̄_
+ 21

)
−

(
0
1

=2̄3
W̄_
+ V :1

0
+ V 0

1
=

)
V

(
1 − 0

1
=
)

−V1

−
(
12̄3
W̄_
+ 21

)
−V1 2 10

:


.

Then, if

" − 2_)�, ≥



2̄3 − 1:
0

2̄3
W̄_
− 2̄3
W̄_
_)� −

(
0
1

=2̄3
W̄_
+ V :1

0
+ V 0

1
=

)
−

(
12̄3
W̄_
+ 21

)
−

(
0
1

=2̄3
W̄_
+ V :1

0
+ V 0

1
=

)
V

(
1 − 0

1
=
)
− V_)� −V1

−
(
12̄3
W̄_
+ 21

)
−V1 2 10

:
− 2 02

:2
=
=;
_)�


≥ 0, (32)

the time derivative of the Lyapunov function is bounded as follows:

¤+ ≤ − 2_)�+ +
(
V
√
= + 2

02

:2
√
=;
=;

=

)
| |x̄ZI | | | ¥W3 |. (33)

It can be demonstrated that by setting 0 = 1
=
, : = 1

4
W̄_
1=
, _)� = XW̄_, V = 22̄3

W̄_
, 2̄3 =

:
0
and X < =;

=
1

41 , inequality (32)

holds for sufficiently large values of 1. Therefore, one can conclude that the system (30) is input-to-state stable [34,

Lemma 4.6], and the following bound holds:

| |x̄ZI (C) | | ≤

√√√√√√max
(
2̄2,

V1
2 ,

02

:2
=
=;

)
min

(
2̄1,

V1
2 ,

02

:2

) | |x̄ZI (0) | |4−_)� C +

√√√√√√max
(
2̄2,

V1
2 ,

02

:2
=
=;

)
min

(
2̄1,

V1
2 ,

02

:2

) [

2W̄_ min
(
2̄1,

V1
2 ,

02

:2

) sup
C≥0
| ¥W3 | . (34)

Finally, from the definition

x̄ZI , (xZI , ( =



1�#−1 & 0

0 �# 0

− :
0
�>&> 0 �#−#!


,

we can conclude that

| |xZI (C) | | ≤^1 | |xZI (0) | |4−_)� C + ^2 sup
C≥0
( | ¥W3 (C) |) , (35)
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with

^1 = | |(−1 | |

√√√√√√max
(
2̄2,

V1
2 ,

02

:2
=
=;

)
min

(
2̄1,

V1
2 ,

02

:2

) | |( | |, (36)

and

^2 =| |(−1 | |

√√√√√√max
(
2̄2,

V1
2 ,

02

:2
=
=;

)
min

(
2̄1,

V1
2 ,

02

:2

) V
√
= + 2 02

:2
√
= − =; =;=

2W̄_ min
(
2̄1,

V1
2 ,

02

:2

) . (37)

In conclusion, we need to demonstrate that ¤W8 and ¥W8 ∀8 ∈ {1 . . . , #}, satisfy the inequalities shown in (4) and (5).

From Equation (35) it follows that

| ¤W8 (C) − 1| ≤ | ¤W3 (C) − 1| + ^1 | |xZI (0) | |4−_)� C + ^2 sup
C≥0
( | ¥W3 (C) |).

Using (17) and (18), we can write the equation above as

| ¤W8 (C) − 1| ≤ ¤W3,max + (^1 + ^2)max{‖xZI (0)‖, ¥W3,max}. (38)

Finally, the assumptions given by Equations (19) and (20) allow us to conclude that inequality (4) holds. Now we

consider bounds on ¥W8 (C). From Equation (27) we get

| ¥W8 | ≤ 1 | |z | | + 1 | |' | | + +0=max
9∈N8
|W8 (C) − W 9 (C) |.

Recalling that 1 = 0# , it follows that

| ¥W8 (C) | ≤ 31‖xZI (C)‖.

Using (35), it can be seen that ¥W8 (C) remains bounded as follows:

| ¥W8 (C) | ≤(31^1 + 31^2 + 1)max
{
‖xZI (0)‖, ¥W3,max

}
. (39)

The above inequality, together with Equations (19) and (20), imply that inequality (5) holds, which completes the proof

of Theorem 1.
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