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Abstract— In the ring formation control problem, the follower is
designated to approach a ring defined relative to the leader. This type
of formation gives the follower more flexibility as it trails the leader. To
achieve such formation, the follower’s reference velocity is derived using
the potential field method, and then a sliding surface is constructed to
enforce the follower to track the reference. Motivated by the Levenberg-
Marquardt algorithm, this paper proposes modifications on the poten-
tial field method to further enhance the follower’s performance in the
ring formation. Specifically, adding the approximated Hessian into the
formulation of the potential field has a damping effect on the controller
and improves the follower’s performance by reducing oscillations about
the sliding surface. The use of the approximated Hessian, which is
introduced in this paper in the context of ring formation, extends and
is useful for control design of potential field methods in general. The
proposed algorithm is discussed and interpreted from the feedback
control viewpoint, where stability is guaranteed. A numerical example
is also presented to illustrate the efficacy of the proposed algorithm.

I. INTRODUCTION

This paper contributes to the studies in leader-wingman
3D formation where the leader governs the movement of
the overall formation while the follower(s) tries to maintain
a relative distance with respect to the leader [1]–[3]. Con-
ventional leader-wingman formations confine the follower to
a single desired position relative to the leader. For enabling
more flexibility in the follower’s motion, the ring formation
control problem [4]–[6] extends the leader-wingman formation
by calling for control algorithms for the follower to approach
and maintain a position on a desired ring, which is a set of
desired points defined relative to the leader.

The potential field method (see, for example, [7]–[9] and
references therein) is an excellent tool for dealing with such
problems. Specifically, the set of desired points can be defined
using objective functions, from which the potential function is
constructed. Subsequently, the potential field is often derived
in the form of the gradient descent to drive the follower toward
the desired points. This has been done in our previous work
[4] where the follower was modeled with single-integrator
kinematics. We then extended the follower’s dynamics to a
double integrator with saturation constraints on the control
input in [6]. In particular, the potential field method was first
used to generate the reference velocity, then a sliding surface
was constructed to enforce the follower to track the reference
velocity. Under the proposed algorithm in [6], we observed an
oscillatory behavior in the follower’s position as it approached
the ring. This oscillation is a well-known limitation of the
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Figure 1. An illustration of a potential function with a ravine-like region,
where the dashed line denotes the global minimum.

gradient descent when the minima (either local or global) are
located at the ravine-like region as illustrated in Figure 1.

The Levenberg-Marquardt algorithm [10], [11] is a robust
method for solving nonlinear least squares problem with many
applications in robotics. For example, it is used in [12]–[14]
for addressing the kinematic singularities of robotic manipu-
lators. In addition, the authors of [15] utilize the Levenberg-
Marquardt to reduce the oscillations of mobile robots when
they are close to obstacles or in narrow passages. Motivated
by the method, we aim to enhance the proposed result of
[6]. In particular, the contributions of this paper are twofold:
i) The approximated Hessian is introduced into the potential
field formulation to generate the reference velocity and the
sliding mode method is utilized to drive the follower’s velocity
to the reference value. We also show how to appropriately
select the weighting coefficients for improving the overall
performance. The improvement in the follower’s performance
is then validated through illustrative examples, which show
that under the proposed algorithm there is no oscillation
when the follower approaches the desired ring. ii) We provide
discussion and explanation for the improvement from the
feedback control viewpoint. Specifically, we show that by
adding the approximated Hessian, the gradient descent is
damped. We also remark that the control design approach
described in this work can be applied to other region-based
problems where a set of desired points can be established
using objective functions.

The organization of this paper is as follows. The necessary
mathematical preliminaries and the problem formulation are
introduced in Sections II and III, respectively. In Section IV,
the control architecture is proposed along with the stability
analysis, and discussion on the effect of adding the approxi-
mated Hessian to the potential field formulation is presented.
Illustrative numerical examples are provided in Section V to
demonstrate the efficacy of the proposed control architecture.
Finally, concluding remarks are summarized in Section VI.



II. MATHEMATICAL PRELIMINARIES

The notations used in this paper are fairly standard. Specif-
ically, N denotes the set of nonnegative integers, R, Rn, and
Rn×m respectively denote the set of real numbers, n×1 real
column vectors, and n ×m real matrices. We write (·)T for
transpose of a vector or of a matrix, (·)−1 for the inverse
of a nonsingular matrix, ‖ · ‖2 for the Euclidean norm of a
vector or induced two-norm of a matrix, and λi(M) for the
i-th eigenvalue of matrix M . A position or velocity vector
without a superscript (e.g., pf or vf ) indicates the vector is
defined in the inertial frame; a position or velocity vector with
a superscript (e.g., pXf or vXf ) indicates the vector is defined
in the reference frame X . Furthermore, a rotation matrix RYX
denotes a transformation from the reference frame X to the
reference frame Y .

The following lemmas are necessary for the development
of the main result of the paper.

Lemma 1 ( Fact 2.16.26, [16]). Let A,B ∈ Rn×n, and
assume that A and A + B are nonsingular. Then, for all
k ∈ N,

(A+B)−1 =
∑k
i=0A

−1(−BA−1)i + (−A−1B)k+1(A+B)−1.

(1)

Lemma 2 ( Section 5.2.4, [17]). Let A ∈ Rn×n be a
symmetric matrix, then its eigenvalues are real and λi(A −
cIn) = λi(A)− c for all i = 1, . . . , n and c ∈ R.

III. PROBLEM FORMULATION

Figure 2 shows a system consisting of two vehicles, a
leader and a follower, is considered. The leader and the
follower are free to move in 3-dimensional Cartesian space.
The follower attempts to approach any position on a ring of
radius R ∈ R+ behind the leader. Our goal is to design a
controller that allows the follower to reach the ring and stay
on it during the mission while the leader can freely navigate.
For that purpose, we define pl , [plx, ply, plz]

T ∈ R3 and
pf , [pfx, pfy, pfz]

T ∈ R3 as positions of the leader and
the follower in the inertial frame, respectively. The follower
is subject to the double integrator dynamics given by

ṗf (t) = vf (t), (2)
v̇f (t) = u(t), (3)

where vf (t) ∈ R3 is the velocity of the follower and u(t) ∈
R3 is the control input satisfying the saturation constraints
|ux| ≤ ūx, |uy| ≤ ūy , |uz| ≤ ūz with ūx, ūy, ūz ∈ R+ .
We also assume that the velocities and accelerations of the
leader and the follower are bounded. As Figure 2 illustrates,
we have

RLi (γ, χ)(pf (t)− pl(t)) = RLi (γ, χ)pd(t) = pLf (t), (4)

or equivalently,

pf (t) = pl(t) +RiL(γ, χ)pLf (t), (5)

where the superscripts and subscripts i and L denote the
inertial frame and the leader frame, respectively; pd(t) ,
pf (t) − pl(t) denotes the vector

−→
LF in the inertial frame,

pLf (t) is the position of the follower in the leader frame (i.e.,
the vector

−→
LF in the leader frame); γ and χ are the leader’s

Figure 2. An illustration of vectors in the inertial frame (black) and the
leader body frame (jade) where the leader is located at L, the follower is
located at F, and the center of the ring is located at the tip of cL ∈ R3.

flight path angle and course angle, respectively (see Figure 2);
RiL(γ, χ) is the rotation matrix for the transformation from
the leader frame to inertial frame defined by (see, for example,
[18, Chapter 2.4])

RiL(γ, χ) ,

cos(χ) − sin(χ) 0
sin(χ) cos(χ) 0

0 0 1

 cos(γ) 0 sin(γ)
0 1 0

− sin(γ) 0 cos(γ)

 .
(6)

We note that
(
RLi (γ, χ)

)−1
=
(
RLi (γ, χ)

)T
= RiL(γ, χ).

Let cL , [cLx , c
L
y , c

L
z ]T ∈ R3 be the center of the ring

and r∗L ∈ R3 be an arbitrary vector in the set of vectors
representing the ring in the leader frame, which is illustrated
by the dashed circle in Figure 2. In other words, we want to
achieve pf (t) = pl(t) +RiL(γ, χ)r∗L.

IV. RING FORMATION MANEUVER WITH POTENTIAL
FIELD METHOD

In this section, we propose a control design procedure for
achieving the ring formation. In particular, we first define the
ring through objective functions and construct the potential
function. Next, the follower’s reference velocity is generated
from the potential field. Then, a sliding mode controller is de-
signed to enforce the follower’s velocity to track the reference
velocity. For that purpose, we start with the definition of the
following objective functions

f1(pd) ,(pdx − [RiL(γ, χ)cL]x)2, (7)

f2(pd) ,(pdy − [RiL(γ, χ)cL]y)2

+ (pdz − [RiL(γ, χ)cL]z)
2 −R2, (8)

where pdi and [RiL(γ, χ)cL]j with j = x, y, z are the
components of pd andRiL(γ, χ)cL, respectively. The follower
is on the desired ring when the aforementioned objective
functions both approach zero; that is, r∗L is defined implicitly
by f1(pd) = f2(pd) = 0. Therefore, we need to derive a
reference velocity for driving the objective functions to zero.
For that purpose, let f , [f1, f2]T be the vector of objective
functions, we now construct the potential function, which



plays Lyapunov-like role, as

V1(pd) =
1

2
fTf. (9)

As an illustration of the potential field in yz plane, Figure 1
depicts the potential generated from the objective function (8)
with R = 3. The gradient is then obtained from taking the
partial derivative of V1(pd) with respect to pd

∂V1
∂pd

=

(
∂f

∂pd

)T (
∂V1
∂f

)
=

(pdx − [RiL(γ, χ)cL]x) 0

0 (pdy − [RiL(γ, χ)cL]y)

0 (pdz − [RiL(γ, χ)cL]z)


︸ ︷︷ ︸

J(pd)T

[
f1
f2

]

=J(pd)Tf, (10)

where J(pd) , ∂f
∂pd
∈ R2×3 is the Jacobian matrix. The most

common way to construct the potential field is to follow the
gradient descent and set the reference velocity to vfref (t) =

−∂V1

∂pd
= −J(pd)Tf . This has been done in our earlier studies

[4] and [6], however, one disadvantage of utilizing the gradient
descent in feedback control is that the gradient is large if the
vehicle is far from the set of desired points and therefore
causes aggressive behavior. Furthermore, if the set of desired
points is in a ravine-like region (see, for example, Figure 1),
the vehicle would oscillate before settling at the desired points.

A. The proposed reference velocity
To avoid undesired behaviors and being motivated by the

Levenberg-Marquardt algorithm [10] and [11], we propose

ṗd(t) = vfref (t) , −(µ1I3 + µ2H)−1JTf, (11)

or equivalently,

ṗf (t) = vfref (t) + ṗl, (12)

where J = J(pd), and H , JTJ ∈ R3×3 is the approxi-
mated Hessian, which is symmetric and positive semidefinite1;
µ1 and µ2 ∈ R+ denote positive gains. The following lemma
is necessary for the development of the main result.

Lemma 3. The matrix M , µ1I3 +µ2H is positive definite.

This lemma comes directly from the fact that H and I3
are symmetric matrices and Lemma 2. We now can state the
following theorem.

Theorem 1. If the follower velocity follows the dynamics
given by (12), then the follower either approaches the center
of the ring or the ring.

Proof. Consider the Lyapunov-like function (9), then its time
derivative along the trajectory of (11) is given by

V̇1(·) =

(
∂V1
∂pd

)T (
∂pd
∂t

)
=− (JTf)T(µ1I3 + µ2H)−1(JTf) ≤ 0, (13)

1This comes directly from the fact that our specified J matrix has
rank JT = rank JTJ = rankH ≤ 2, and the matrix JTJ is symmetric
with nonnegative eigenvalues.

where the last inequality comes directly from Lemma 3. Next,
consider the set Ω , {pd ∈ R3 : V1(pd) ≤ d} where d is
some positive constant. If pd(0) ∈ Ω, it follows from (13)
that pd(t) remains in Ω for all t > 0. Thus, Ω is a compact
set. By LaSalle’s invariance principle (see, for example [19,
Chapter 3.4]), every solution starting in Ω approaches the
largest invariant set in E = {pd ∈ R3 : V̇1 = 0}.
Note that since the matrix µ1I3 + µ2H is positive definite,
the last inequality in (13) indicates V̇1 = 0 only when
JTf = 0; that is, (i) f1(pd)(pdx − [RiL(γ, χ)cL]x) = 0,
(ii) f2(pd)(pdy− [RiL(γ, χ)cL]y) = 0 and (iii) f2(pd)(pdz−
[RiL(γ, χ)cL]z) = 0, simultaneously. In other words, E =
RiL(γ, χ)cL ∪ {pd ∈ R3 : f1(pd) = f2(pd) = 0}, which is
the center of the ring and the ring. Since both component
sets of E are invariant, the largest invariant set in E is
itself. In addition, V1(pd) is radially unbounded and hence
all trajectories converge to either the center of the ring or the
ring. �

Remark 1. The center of the ring in the inertial frame
RiL(γ, χ)cL is an unstable equilibrium point, and hence, any
perturbation and/or disturbance (e.g., winds) about this point
makes pLf move away from it and converge to the ring. The
follower therefore does not pragmatically converge to the
center of the ring.

B. Constructing the Controller
Next, to design the controller u(t) subjected to the satura-

tion constraints for the double integrator dynamics given by
(2)-(3), we define

s(t) , ṗd(t)− vfref (t) + ξ(t) ∈ R3, (14)

where ξ(t) ∈ R3 is an extra term to compensate for the input
saturation and is updated under the dynamics given by

ξ̇(t) = −kξ(t) + ∆u(t), ξ(0) = ξ0, (15)

where k ∈ R+ is a constant gain, ∆u(t) , ud(t) − ua(t)
with ud(t) , [udx, udy, udz]

T being the designed controller
and ua(t) being the saturated controller defined by

ua(t) ≡ u(t) , sat(ud) = [sat(udx), sat(udy), sat(udz)]
T.

(16)

Once again, sat(udi) = sign(udi) min{|udi|, ūi} for i =
x, y, z. In general, the initial value ξ0 can be set to any
finite value, yet it is often set to zero. We want to design
the controller to bring the trajectory to the sliding manifold
s = 0 and maintain it there. Toward that end, taking the time
derivative of (14) yields

ṡ(t) = u(t)− p̈l(t)− v̇fref (t)− kξ(t) + ∆u(t)

= ud(t)− p̈l(t)− v̇fref (t)− kξ(t), (17)

where p̈l(t) and v̇fref (t) can be obtained by passing pl(t)
and vfref (t) through command filters (see, for example,
[20], [21]). Note that the command filter contains magnitude
limiter and rate limiter; therefore, p̈l(t) and v̇fref (t) can
be bounded when necessary. We now select the Lyapunov
function candidate

V2 =
1

2
sTs, (18)



and take its time derivative along the trajectory (17) to obtain

V̇2 = sT
(
ud(t)− p̈l(t)− v̇fref (t)− kξ(t)

)
. (19)

By choosing the controller

ud(t) = p̈l(t) + v̇fref (t) + kξ(t)− k2s(t)− k3 sign(s),
(20)

with k2, k3 ∈ R+ being constant gains and sign(s) =
[sign(sx), sign(sy), sign(sz)]

T, (19) becomes

V̇2 =− k2sTs− k3sT sign(s)

≤− k3‖s‖1 = −k3 (|sx|+ |sy|+ |sz|) . (21)

With the preceding procedure, the main result of this section
can be expressed the following theorem.

Theorem 2. Consider the follower’s double integrator dy-
namics given by (2)-(3), and the reference vector rL∗, which
is implicitly defined by the objective functions (7)-(8) when
f1(pd) = f2(pd) = 0. If the follower executes the controller
ua(t), which is constructed following the controller design
procedure shown by (9-21) with ud(t) given by (20), and
no input saturation occurs after finite time, then the follower
converges to the desired ring.

Proof. With the Lyapunov function (18) and its time deriva-
tive (21), it is guaranteed that the trajectories reach the
manifold s = 0 in finite time (see, for example, [19, Chapter
10.1]). In addition, we assume that no input saturation occurs
after finite time; that is, there exists a finite time τ ∈ R+ such
that ∆u(t) = 0 for t ≥ τ . As a result, the dynamics (15)
indicates the compensative term ξ(t) exponentially converges
to 0 for t > τ . Since s(t) = ṗd − vfref (t) + ξ, when s(t)
and ξ(t) approach 0, ṗd(t) approaches vfref (t), which drives
the follower to the desired ring as shown in Theorem 1 and
discussed in Remark 1. �

C. Damping Effect of the Proposed Reference Velocity
In our previous works [4] and [6], the effects of a large

gradient were mitigated by using the natural logarithm and
hyperbolic functions for constructing the potential functions
instead of putting it in the least squares form. In this paper,
the least squares form of the potential field (9) is utilized and
the proposed reference velocity given by (11) is based on the
Levenberg-Marquardt method, which introduces the approx-
imated Hessian into the dynamics. We note that in solving
nonlinear least squares problems, the Levenberg-Marquardt
method is well known for its fast convergence and is often
seen with µ2 = 1 and µ1 is an adaptive term. In this work,
we set µ1 and µ2 to constant gains and look at the Levenberg-
Marquardt method from the feedback control perspective.
Especially, we want to emphasize the damping effect of the
structure (11), which helps improve the performance of the
overall system. Stated more specifically, using Lemma 1 with
A = µ1I3, B = µ2H , and k = 0, then we have

M−1 =(µ1I3 + µ2H)−1 =
1

µ1
I3 −

µ2

µ1
H(µ1I3 + µ2H)−1

=
1

µ1
I3 −

µ2

µ1
HM−1. (22)

As a result, (11) can be rewritten in the form

ṗd(t) =−
(
µ1I3 − µ2HM

−1
)
JTf

=− 1

µ1
JTf +

µ2

µ1
HM−1JTf, (23)

where the first term is the gradient descent and the second
term is the damping term of the gradient descent, which is
proved shortly. We start with the following lemma.

Lemma 4. The matrix HM−1 is positive semidefinite.

Proof. Utilizing (22) yields

HM−1 =
1

µ2
I3 −

µ1

µ2
M−1, (24)

and hence, HM−1 is symmetric. From Lemma 2, one obtains
λi(M) = µ1 + µ2λi(H) > 0 for all i = 1, 2, 3, and

λi(HM
−1) =

1

µ2
− µ1

µ2

(
1

µ1 + µ2λi(H)

)
=

λi(H)

µ1 + µ2λi(H)
, ∀ i = 1, 2, 3. (25)

Since λi(H) ≥ 0 and µ1 + µ2λi(H) > 0, λi(HM−1) ≥ 0
for all i = 1, 2, 3. The result is now immediate. �

Proposition 1. The term “µ2

µ1
HM−1JTf” in (23) is the

damping term of the gradient descent.

Proof. Taking the dot product of the first and second term
in (23) and utilizing Lemma 4 yield

p ,

(
− 1

µ1
JTf

)T (
µ2

µ1
HM−1JTf

)
=− µ2

µ2
1

(
JTf

)T
HM−1(JTf) ≤ 0. (26)

This indicates that the vector “µ2

µ1
HM−1JTf” always be-

longs to the an opposite half-space of the gradient descent
(i.e., the first term in (23)). Hence, the result follows. �

D. Discussion of the performance
Since (µ1I3 +µ2H)−1 is positive definite, the result vector

of (23) is in the same half-space with the gradient descent.
Consequently, the gain µ2 can be set to an arbitrarily large
value. The damping effect of the proposed reference velocity
(11) will be illustrated in Section V. In addition, let ˙̄V1(·) =
−(JTf)T(µ1I3)−1(JTf) ≤ 0 being the time derivative of
the the Lyapunov-like function (9) corresponding to µ2 = 0
(i.e., the reference velocity is the gradient descent), then from
(13) and (22), one can easily justify that

V̇1(·)− ˙̄V1(·) = −µ1p ≥ 0, (27)

where p is given in (26). Therefore, under (11), V1(pd)
approaches zero slower than the reference velocity generated
by the gradient descent method. This results from the damping
term. We note that in general the magnitude of the gradient
descent is quadratically proportional to the distance to the
ring. As a result, the reference velocity generated by the
gradient descent method has the tendency to change drastically
when the follower approaches the ring, whereas it takes time
for the acceleration to drive the follower velocity toward
the reference. This causes not only the acceleration (i.e., the
control input) to be saturated but also oscillations when the



follower is in the vicinity of the ring as the potential field
around the ring is ravine-like (see Figure 1 for illustration).
On the other hand, with an appropriate choice of µ1 and µ2

for the proposed reference velocity (11), the gradient descent
can be damped and results in reference velocity vectors with
moderate magnitudes, which can release the control input
from being saturated as well as reduce oscillations.

While a good selection of µ1 and µ2 depends on the
vehicle configurations and the saturation threshold of the
control input, some trade-offs on varying these gains can be
observed. A large value of µ1 induces a reference velocity
with a small magnitude, which can be achievable without
making the control input saturated; however, the follower may
converge to the ring slowly. On the other hand, a small value
of µ1 induces a reference velocity with a large magnitude,
which could make the control input constantly saturated and
results in oscillations when approaching the ring. In addition,
for a fixed µ1 value, if µ2 is set to a large value, the result
reference velocity vector is small, and a slow convergence can
be expected. If µ2 is set to a small value, the damping effect
is mitigated.

V. ILLUSTRATIVE NUMERICAL EXAMPLES

For this numerical example, the leader’s and fol-
lower’s initial positions are set to [−300,−500, 1000]T and
[−350,−520, 1010]T, respectively. The desired ring is cho-
sen to have the radius R = 10 m and the center cL =
[−10, 0, 0]T. The leader is commanded to travel on a straight
line at a constant speed of 30 m/s while the follower has
an initial speed of 25 m/s. The proposed controller ua(t)
(16) is implemented with ud(t) being given by (20) and
ū = [10, 5, 5]T. In addition, the constant gains are set to
k1 = 0.5, k2 = 2, k3 = 1, and the term sign(s) is replaced
by tanh(5s) to prevent the chattering of the control signal.

For comparison purposes, we implement the reference ve-
locity (11) under two different configurations. For the first
case, we set µ1 = 10 and µ2 = 0 and impose a saturation
constraint on the reference velocity to prevent it from growing
large.2 For the second case, we set µ1 = 10 and µ2 = 2 with
no saturation constraint on the reference velocity. Figures 3-5
show the performance of the follower for these two cases. In
particular, Figure 3 shows that the trajectories of the follower
(blue aircraft) converge to the desired ring in both case.
However, the trajectory of the first case (dotted line) oscillates
as the vehicle approach the desired ring, whereas the trajectory
of the second case (solid line) is smooth. In addition, the
oscillations of the first case are also captured in the evolution
of its f2 (dash-dotted line) as illustrated in Figure 4. One can
also observe in Figure 4 that f1 and f2 in the second case
(solid lines) are smooth and represent a better convergence.
Furthermore, the evolution of ξ(t), s(t) and u(t) in the second
case are plotted in Figure 5. Specifically, the controller is only
saturated at the beginning due to a large initial error (or large
values of f1 and f2), which leads to the initial growth of
ξ. Yet, ξ quickly decays to zero, which indicates that the
controller is no longer saturated afterward. The variable s also
converges to a small neighborhood of zero indicating that ṗd
closely tracks to the reference velocity vfref .

2Imposing a saturation constraint on the reference velocity still results
in the convergence of the follower to the desired ring. We refer interested
readers to [6] for the detailed proof.

Figure 3. The evolution of the follower (blue aircraft) under the proposed
algorithm (16) and the reference velocity (11) with µ1 = 10 and: (i)
µ2 = 0 (dotted line) and (ii) µ2 = 2 (solid line).
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Figure 4. The evolution of
√
|f1(pd)|,

√
|f2(pd)| where f1 and f2

are defined in (7) and (8) under the reference velocity (11) with µ1 = 10
and: (i) µ2 = 0 (dotted and dashed lines) and (ii) µ2 = 2 (solid lines).
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Figure 5. The evolution of ξ(t) (top), s(t) (middle) and u(t) (bottom)
under the proposed algorithm (16) and the reference velocity (11) with
µ1 = 10 and µ2 = 2..

To further illustrate the effectiveness of the proposed con-
troller, the configurations in the above second case (i.e.,
µ1 = 10 and µ2 = 2) for the follower controller is used for
a highly maneuverable scenario. In particular, the leader and
follower are initially positioned at [−300,−500, 1000]T and
[−320,−550, 1050]T, respectively. The leader is commanded



Figure 6. The evolution of the follower under the proposed algorithm
(16) and the reference velocity (11) with µ1 = 10 and µ2 = 2, where
the leader follows an S-shaped trajectory.
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Figure 7. The evolution of
√
|f1(pd)|,

√
|f2(pd)| where f1 and f2 are

defined in (7) and (8) under the reference velocity (11) with µ1 = 10 and
µ2 = 2, where the leader follows an S-shaped trajectory.

to follow a fixed-altitude S-shaped trajectory. The performance
of the follower under the proposed controller is demonstrated
in Figures 6 and 7. More details, Figures 6 shows that
the follower is able to approach the ring smoothly without
oscillations. Figures 7 shows that f1 and f2 quickly converge
to zero neighborhood, and therefore, the follower can closely
track the leader during the mission in spite of the highly
maneuverable trajectory. It can be also observed in Figure 6
that the ring formation allows the follower to shift from right
to left with relative to the leader, and vice versa, during the
mission depending on the movement of the leader.

VI. CONCLUSION

The paper proposed to add the approximated Hessian into
the potential field formulation for improving the follower’s
performance in the ring formation. It has been shown that with
this addition, the gradient descent is damped and allows for the
follower to converge to the desired ring without oscillations.
The improvement was validated through the examples. For
the future work, we will investigate designing a distributed
controller for multiple followers to converge to the ring as
well as implementing collision avoidance among the vehicles.
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