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I. Introduction

Navigation in threat-laden environments is a fundamental problem for many applications and missions [1, pp. III-1].

For example for a supply airplane to reach its destination in a reasonable time, it may have to fly over or near

unfriendly areas containing one or more ground-based enemy defensive assets, which could fire upon the airplane should

it come too close. Ideally, the airplane and its crew strives to reach a designated goal as quickly as possible, while

avoiding aggressive maneuvers to avoid interception, should one of the defensive assets decide to engage. While there is

a wealth of literature concerning navigation in obstacle-laden environments (c.f., e.g., [2]), there is a gap concerning the

case when the “obstacles” are not only dynamic but also adversarial.

When it comes to modeling adversarial engagements between mobile agents, a common paradigm has been

differential games (c.f., e.g., [3]). If a scenario can be described wherein two players have a diametrically opposed

objective that can be distilled to a single scalar value, one can formulate a zero-sum differential game. The solution of

a differential game may be comprised of the Value function that describes the equilibrium value of the cost/reward

as a function of the initial condition as well as the equilibrium control policies for the two players (often, the Nash

equilibrium is the desired solution concept). Two particular classes of differential game problems are particularly

relevant to the adversarial navigation problem described above: pursuit-evasion and target guarding (which also appears

in the literature as reach-avoid). In the former, a Pursuer generally seeks to capture an Evader in minimum time

or minimum control effort, while in the latter, a Defender generally seeks to capture an Attacker before the latter is

able to reach some target or goal region; many of these problems and the literature surrounding them are described

in [4] . However most of these solutions, in themselves, are not well-suited to address the navigation problem. With

pursuit-evasion solutions, for example, it’s difficult to incorporate objectives for the Evader outside of merely evading

without completely changing the problem formulation. Target Guarding solutions, on the other hand, typically delineate

where breach or capture can be guaranteed but generally do not account for possible constraints on the Defender.

Some notable and relevant exceptions include the following works. In [5] the authors explicitly formulated a target

guarding game with a fixed time limit. This could be seen as a constraint on the Defender’s onboard fuel, for example.

However, the solution only answers the question of what is the outcome (breach or capture) and equilibrium headings
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of the agents as a function of the initial positions assuming that the engagement (i.e., the playout of the differential

game) begins immediately. In other words, it does not directly address the strategy of either agent before or after the

engagement. Another example is the work in [6]. There, a zero-sum stochastic differential game is formulated in which

one player desires to keep the state of the system in the safe set for some specified duration (akin to a range or fuel

constraint) while the other desires to cause the system to enter the unsafe set. Like the previous work, this solution

describes what the agents should do once the clock starts but does not directly address how the Evader should navigate

to avoid (a priori) getting into a situation in which it could lose this game.

In order to begin addressing what may happen before or after an engagement takes place we introduce the following.

Definition 1 (Engagement Zone). Given a Mobile Agent, 𝐴, Threat, 𝑇 , their respective dynamic models, ¤x𝐴, ¤x𝑇 , and an

Agent strategy, 𝑢𝐴(𝑡), an Engagement Zone (EZ) is a region of the state space in which it is possible for the Threat to

neutralize the Mobile Agent if the latter does not deviate from its current strategy.

Note this is just one particular definition for EZ. The interpretation is this: if the Agent remains outside of the

EZ associated with a particular Threat that the latter may not have any incentive to actively engage the Agent as 1)

neutralization (e.g., capture) cannot be guaranteed and 2) the Agent does not even need to actively maneuver/evade to

avoid the Threat. The latter point distinguishes the EZ from the less conservative approach of win/lose regions obtained

from solutions of differential games. Navigating near the win/lose region boundary could necessitate an aggressive

maneuver by the Agent should the Threat decide to engage.

Some earlier papers by the authors have begun to address navigation around EZs. In [7] the single-Agent, single-EZ

navigation problem was introduced. There, path plans were devised for which the Agent avoided entering into the EZ

and others which allowed some penetration into the EZ to reduce overall travel time or reach the goal at a specified

arrival time. Then the results were extended in [8] to address navigation of a single vehicle around (or through) two EZs.

In both of these works, a notional EZ model based on a cardioid shape was assumed. This EZ was not tied to a particular

model of the Threat itself. In practice, for a particular Agent and Threat model, one may compute EZs via simulation,

in which case the EZ may be data-based and not analytic which could make planning a path more computationally

expensive. This paper makes the following two contributions: 1) a set of EZs that are based on first-principle models of

the Agent and Threat 2) a direct comparison of EZ-based navigation and path-planning to the nominal approach of

circumnavigation.

The remainder of the paper is organized as follows. Sections II and III model the Threat as a Pursuer and a Turret,

respectively, and derive the associated EZs. Section IV highlights path planning as a potential application of EZs.

Section V concludes the paper.
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II. Pursuit-Evasion

A. Basic Pursuit-Evasion Model

In this section, the Threat from Definition 1 is specialized to be a Pursuer. Perhaps the most basic dynamic model

to consider for pursuit-evasion is that of both agents moving with simple motion in the two-dimensional plane (i.e.,

𝐴, 𝑃 ∈ R2). That is, both agents move with constant speeds and have control over their instantaneous heading [9]:

¤x =


¤x𝑃

¤x𝐴

 =



¤𝑥𝑃

¤𝑦𝑃

¤𝑥𝐴

¤𝑦𝐴


=



𝑣𝑃 cos𝜓𝑃

𝑣𝑃 sin𝜓𝑃

𝑣𝐴 cos𝜓𝐴

𝑣𝐴 sin𝜓𝐴


, x(0) =



𝑥𝑃0

𝑦𝑃0

𝑥𝐴0

𝑦𝐴0


(1)

where the Mobile Agent’s control is 𝑢𝐴 ≡ 𝜓𝐴. For this scenario, neutralization is said to occur if 𝐴 comes within 𝑟 ≥ 0

distance of 𝑃 (i.e., 𝐴 is captured by 𝑃):

N =
{
x | 𝐴𝑃 ≤ 𝑟

}
, (2)

where N is the neutralization set, and the notation 𝐴𝑃 is used to indicate the distance between two points, e.g., 𝐴 and

𝑃. Define the speed ratio of Mobile Agent and Pursuer speeds as ` = 𝑣𝐴
𝑣𝑃

> 0. Note that since the EZ is based on the

Mobile Agent implementing zero control capture may be possible, depending on the initial conditions, even when ` > 1.

It is common to consider such a pursuit-evasion scenario as-is without any additional constraints. Alternatively, some

work has been done on similar scenarios taking place in the presence of obstacles [10], in bounded domains [11], and

under a variety of other geometric and integral constraints [12]. This paper considers the Pursuer to be range-limited

with maximum range 𝑅 as in [9]. Thus the Pursuer is capable of reaching any point within the disk of radius 𝑅 centered

at its initial position, and thus its reachability region is

R𝑃 =
{
(𝑥, 𝑦) | (𝑥 − 𝑥𝑃0

)2 + (
𝑦 − 𝑦𝑃0

)2 ≤ 𝑅2
}
. (3)

Note that one possible interpretation of the range-limit is that the Pursuer may have arbitrary endurance as long as it

stays within 𝑅 of its initial position. Under this interpretation, the range-limit may represent a maximum communication

range or sensing range for some base station located at the Pursuer’s initial position. Another interpretation is that

the Pursuer may only traverse a total distance 𝑅 along its trajectory, which does not necessarily preclude the Pursuer

from stopping. Based on the constant speed model of the Pursuer, however, stopping would require, e.g., modulating

its heading, 𝜓𝑃 , infinitely fast. In this work, such a maneuver, although mathematically possible, is considered to

consume the Pursuer’s remaining range at the same rate as if it were moving. Therefore, the range-limit is analogous to
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a time-limit – the Pursuer may be equipped with, for example, a solid rocket motor which, once started, has a fixed time

at which fuel will run out (barring changes in environmental conditions or changes in various forces experienced along

the trajectory).

Remark 1. If the Pursuer has additional, unmodeled dynamics (e.g., a bounded turn rate) then this analysis is conservative.

B. Pursuit-Evasion EZ

Lemma 1. Under the model Eq. (1) if the Mobile Agent, starting from 𝐴0 and moving with 𝜓𝐴 cannot be neutralized by

𝑃 under collision course guidance then the point 𝐴0 is outside of the EZ.

Proof. Collision course, wherein the Pursuer takes a straight-line path along the line connecting its initial position to

the Mobile Agent’s position at the time of neutralization, yields the minimum time trajectory for 𝑃 to intercept 𝐴 [9].

Therefore, if the collision course trajectory results in 𝑃 travelling a distance greater than 𝑅, then the Mobile Agent cannot

be neutralized under any guidance law. Thus, from Definition 1, the initial position of 𝐴 must be outside the EZ.

Corollary 1. The boundary of the EZ is the locus of all Mobile Agent initial positions corresponding to neutralization

by the Pursuer via a collision course trajectory of length equal to its maximum range, 𝑅.

This result is useful in obtaining the boundary of the EZ as follows. Define the quantity 𝜌 ≡ 𝑃0𝐴0 to be the

initial distance between the agents resulting in the Pursuer taking a collision course trajectory of length 𝑅. Then the

Engagement Zone is defined mathematically by

Z =
{
𝐴0 | 𝑃0𝐴0 ≤ 𝜌(b; `, 𝑅, 𝑟)

}
, (4)

where b, the aspect angle, is the angle the Agent’s heading makes with the initial line-of-sight angle. Define a set of

coordinate axes (𝑥, �̂�) whose origin is 𝑃0 in which the 𝑥 vector is aligned with the heading of the Mobile Agent.

Remark 2. This model and the resulting EZ may be the simplest way of directly accounting for the effect of aspect angle

and closing speed on the engagement which was the main physical phenomena under investigation in [7].

1. Fast Pursuer

For the case of a fast Pursuer (` ≤ 1), the Law of Cosines applied to the triangle △𝑃0𝐸0𝐸 𝑓 may be used to obtain an

expression for 𝜌 (see Fig. 1):

𝜌(b; `, 𝑅, 𝑟) = `𝑅

cos b +
√︄

cos2 b − 1 + (𝑅 + 𝑟)2

`2𝑅2

 , ` ≤ 1, b ∈ [−𝜋, 𝜋] . (5)
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Fig. 1 Range-limited, simple motion pursuit-evasion Engagement Zone for fixed Agent heading and fast Pursuer
(speed ratio ` = 0.7) with finite capture radius (𝑟 = 0.25) and a maximum range of 𝑅 = 1.

Fig. 1 shows an example EZ for the fast Pursuer case along with relevant geometry. The symbol 𝜕 is used to denote the

boundary of a set or region.

The paper by the authors [7] contains an expression for an EZ that is similar to Eq. (5) but is not based on a particular

model of the engagement between the Mobile Agent and the Threat. That expression (with changed notation) is

�̃� =
cos b + 1

2
( �̃�max − �̃�min) + 𝜌min (6)

where �̃�max ≡ �̃�(b = 0) and �̃�min ≡ �̃�(b = 𝜋). The two models for the distance of the EZ boundary from the Threat’s

initial position may be compared by setting �̃�max = maxb 𝜌 = (1 + `) 𝑅 + 𝑟 and �̃�min = minb 𝜌 = (1 − `) 𝑅 + 𝑟 . Fig. 2

shows a comparison of Eqs. (5) and (6) for a variety of ` < 1. Note that the biggest deviation between the two models

occurs for higher ` and for aspect angles near the center of the domain |b | ∈ [0, 𝜋].
This section is focused on the particular interpretation of the EZ that is based on fixing 𝜓𝐴 and varying b to construct

the region Z. Another valid interpretation of the EZ is based on fixing b and varying 𝜓𝐴. The same geometry depicted

in Fig. 1 applies for the example shown. Based on Eq. (5) it is clear that if b is held constant 𝜌 is constant as it does not

depend directly on 𝜓𝐴. Thus, the EZ for a fixed aspect angle is a circle centered at 𝑃0, as shown by the dashed green

circle in Fig. 1. These two interpretations of the EZ boundary yield the same 𝐴0 for the points corresponding to the b

and 𝜓𝐴 values used.
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Fig. 2 Comparison of the Pursuit-Evasion EZ model presented in this paper with a previously developed generic
EZ model from [7].

2. Slow Pursuer

When the Pursuer is relatively slow (` > 1) then there are aspect angles (b values) for which neutralization is

possible only if the Mobile Agent started on or within the capture disk of the Pursuer. This is because of the fact that in

order for the Pursuer to move and neutralize the Mobile Agent their separation distance must be non-increasing at the

time of neutralization. Thus the optimal Pursuer heading must be cos𝜓∗
𝑃 ≤ cos−1 1

` . This is akin to the Usable Part of

the terminal surface in the verbiage of Isaacs [3]. An analogous result appears in the related scenario covered in [13] in

which this condition is used to delineate the positions from which a slow Observer may establish contact with a fast

Target. The locus of initial Mobile Agent positions corresponding to collision course with 𝜓∗
𝑃 = cos−1 1

` (with the

Pursuer travelling 𝑅 distance or less) forms a portion of the EZ boundary. From the Law of Sines, the Pursuer’s travel

distance may be expressed as

𝑃0𝑃 𝑓 =
𝑟 sin(b + 𝜓𝑃)

` sin b − sin(b + 𝜓𝑃) . (7)

Invoking the Law of Sines once more and substituting in the above with 𝜓𝑃 = cos−1 1
` gives

𝜌(b; `, 𝑅, 𝑟) = 𝑟
√︁
`2 − 1

` sin|b | − sin
(
|b | + cos−1 1

`

) . (8)

It can be verified that the aspect angle which satisfies both Eqs. (5) and (8) is

b𝑐 = ± sin
©«
(𝑅 + 𝑟)

√︁
`2 − 1

`𝑅
√︃
`2 − 1 + 𝑟2

𝑅2

ª®®¬ . (9)
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Fig. 3 Range-limited, simple motion pursuit-evasion Engagement Zone for fixed Agent heading and slow
Pursuer (speed ratio ` = 1.5) with finite capture radius (𝑟 = 0.25) and a maximum range of 𝑅 = 1. Two example
trajectories are shown: (blue/red) the Agent starts on the boundary of the EZ wherein the capture configuration
is general, and (light blue/pink) the Agent starts on the EZ boundary wherein the Pursuer-Agent distance rate is
zero at capture.

Of course, the last possible b value in this family of trajectories corresponds to the one where 𝑃0𝑃 𝑓 = 0 which gives

bmax = 𝜋 − cos−1 1
` . Finally, the complete expression for 𝜌 in the case of a slow Pursuer is given by

𝜌(b; `, 𝑅, 𝑟) =



`𝑅

[
cos b +

√︂
cos2 b − 1 + (𝑅+𝑟 )2

`2𝑅2

]
if |b | ∈ [0, b𝑐]

𝑟
√

`2−1

` sin | b |−sin
(
| b |+cos−1 1

`

) if |b | ∈
(
b𝑐, 𝜋 − cos−1 1

`

]
𝑟 otherwise

, ` > 1, b ∈ [−𝜋, 𝜋] . (10)

Fig. 3 shows an example for the slow Pursuer case along with relevant geometry.

III. Turret-Evasion

A. Basic Turret Model

In this section, the Threat from Definition 1 is specialized to be a Turret, denoted by 𝑇 . The Turret is a stationary

agent with a look angle, \, bounded turn rate, 𝜔 ∈ [−�̄�, �̄�], and finite range, 𝑅. As in the previous section, the

Mobile Agent, moves with constant speed and controls its instantaneous heading. A similar model has been used, e.g.,
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in [14–16]. The kinematics of the system in polar form are

¤x =


¤x𝑇

¤x𝐴

 =



¤\

¤𝑥𝐴

¤𝑦𝐴


=



𝜔

𝑣𝐴 cos𝜓𝐴

𝑣𝐴 sin𝜓𝐴


, ¤x(0) =



\0

𝑥𝐴0

𝑦𝐴0


(11)

where, again, the Mobile Agent’s control is 𝑢𝐴 ≡ 𝜓𝐴. Neutralization is said to occur if cos \ = 𝑥𝐴
𝐴𝑇

, sin \ = 𝑦𝐴
𝐴𝑇

, and

𝐴𝑇 ≤ 𝑅. Define the ratio of the Mobile Agent’s speed and Turret’s maximum turn rate as ` = 𝑣𝐴
�̄� . Note that, without

the range constraint on the Turret that neutralization is possible from any initial condition (eventually). Similar to the

range-limited Pursuer considered in the previous section, all the points within a distance of 𝑅 from the 𝑇 are considered

to be reachable by the Turret, i.e.,

R𝑇 =
{(𝑥, 𝑦) | (𝑥 − 𝑥𝑇 )2 + (𝑦 − 𝑦𝑇 )2 ≤ 𝑅

}
. (12)

B. Turret EZ

The EZ constructed for the turret-evasion model is fundamentally different from the one constructed for the

Pursuit-Evasion model in the previous section. That is due to the fact that in the former it was assumed that 𝑃 was

removed from the scenario once its range/fuel had been exhausted, whereas here the Turret is always “active” even if

it is not moving. For example, if the Mobile Agent begins very far away and is aimed at the Turret’s position it will

eventually collide with the Turret’s beam thereby becoming neutralized. Based on Definition 1, that point, no matter how

far away, is considered to be in the EZ. Therefore, the construction of the turret-evasion EZ is only based upon terminal

Agent positions which are exiting the Turret’s reachable set, R𝑇 (i.e., the right half-circle in the (𝑥, �̂�) coordinate system).

For a particular terminal Agent position, 𝐴 𝑓 , it is assumed that 𝑇 turned in the shortest direction to align with the Agent.

Define the angle traversed by the Turret during an engagement as 𝛾, thus from this assumption 𝛾 ∈ [−𝜋, 𝜋]. Moreover,

because only those 𝐴 𝑓 positions which are exiting R𝑇 matter the range for 𝛾 is even further restricted:

𝛾 ∈



[− 𝜋
2 − \0, 0

] ∪ [
0, 𝜋

2 − \0
]

if cos \0 > 0[−𝜋, 𝜋
2 − \0

] ∪ [ 3𝜋
2 − \0, 𝜋

]
if cos \0 < 0, sin \0 > 0[−𝜋, − 3𝜋

2 − \0
] ∪ [− 𝜋

2 − \0, 𝜋
]

if cos \0 < 0, sin \0 < 0

(13)

This range for 𝛾 gives results in the final Turret look angle to be in the range \ 𝑓 ∈ [−𝜋/2, 𝜋/2].

Proposition 1. Under the model Eq. (11) the most limiting scenario (in terms of initial Agent positions, 𝐴0) is when 𝑇

turns at its maximum angular speed and neutralizes 𝐴 exactly when it is exiting R𝑇 , i.e., cos \ 𝑓 =
𝑥𝐴 𝑓

𝑅 and sin \ 𝑓 =
𝑦𝐴 𝑓

𝑅
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Fig. 4 Range-limited turret-evasion Engagement Zone for fixed Agent heading and Turret (speed ratio ` = 0.5)
with maximum range of 𝑅 = 1.

where \ 𝑓 ≡ \0 + 𝛾.

IV. Application to Path Planning
One possible application of these results is to plan paths which stay outside of the EZ. Perhaps the most basic

instantiation of such a scenario is to specify initial and goal positions for a vehicle, place a range-limited Pursuer in

between, and specify a desire for the vehicle to reach the goal position in minimum time. This usage of the EZ was

the subject of [7, 8], although, in the former, considerations for acceptance of some entry into the EZ were included.

Mathematically speaking, we wish to solve the following problem:

min
𝜓 (𝑡 )

𝑡 𝑓

subject to x𝐴(0) =
[
𝑥𝐴0 𝑦𝐴0

]⊤
,

x𝐴(𝑡 𝑓 ) =
[
𝑥𝐴 𝑓 𝑦𝐴 𝑓

]⊤
,

(x𝐴(𝑡), 𝜓(𝑡)) ∉ Z, ∀𝑡 ∈ [
0, 𝑡 𝑓

]
,

(14)

where Z is given by Eq. (4). Note that the instantaneous EZ shape depends on the Agent’s position as well as its

heading. Eq. (14) is solved by first discretizing the trajectory and then solving via a nonlinear program. Specifically,

even collocation is used (wherein the path constraint of staying outside the EZ is imposed at the discrete nodes) and the

Ipopt solver [17] is used within the JuMP package [18] for the Julia programming language.

In order to illustrate some of the potential benefits of the EZ-based path planning approach several circumnavigation-
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Table 1 Circumnavigation Trajectories

Label �̂� Time EZ % difference

Reach 𝑅 + 𝑟 7.46 -1.61%
Worst (1 + `)𝑅 + 𝑟 8.44 -13.0%
Apol (1 − `)𝑅 + 𝑟 7.04 4.32%

based nominal trajectories are described in the following. Each circumnavigation-based trajectory has an associated

circle, centered on 𝑃 with a particular radius, which the Agent navigates around in minimum time. In particular, the

Agent heads from its initial position towards the tangent on the associated circle, remains on the circle for some portion

of its trajectory, and then departs the circle tangentially to reach the specified goal location. Therefore, the associated

travel time is given by

𝑡⃝𝑓 =
1
`

(√︃
𝑃𝐴0 − �̂�2 +

√︃
𝑃𝐴 𝑓 − �̂�2 + �̂� |\2 − \1 |

)
, (15)

where �̂� is the radius of the circle and \1, \2 are given by

\1 = atan2
(
𝑦𝐴0 , 𝑥𝐴0

) − cos−1
(

�̂�

𝑃𝐴0

)
, \2 = atan2

(
𝑦𝐴 𝑓 , 𝑥𝐴 𝑓

)
+ cos−1

(
�̂�

𝑃𝐴 𝑓

)
, (16)

where atan2 is the two-argument inverse tangent function. Three different circumnavigation radii are considered and

summarized in Table 1. The last column in the table gives the improvement (negative) or loss (positive) of the EZ-based

path plan w.r.t. the associated circumnavigation path plan in terms of time, i.e.,

EZ % difference =
©«
𝑡EZ
𝑓 − 𝑡⃝𝑓
𝑡⃝𝑓

ª®¬ · 100. (17)

The trajectories are shown in Fig. 5.

The circumnavigation trajectory labeled Reach is based on navigating around the circle corresponding to the

reachable region of 𝑃 accounting for its capture radius, i.e. the capturability region, hence �̂� = 𝑅 + 𝑟. If the Agent

follows this trajectory it need not react to Pursuer if the latter were to begin moving since capture is not possible for any

of the points along the trajectory (depending on whether the boundary of the capturability region is considered capture

or not). The EZ-based path plan results in a time savings of 1.61% w.r.t. this path plan due to the fact that the former

passes through the capturability region. For those points inside said region, if 𝑃 were to begin moving 𝐴 would be

guaranteed to exit the region before capture could occur simply by maintaining its heading (by way of these points being

outside the EZ). Thus 𝑃 has little to no incentive to begin moving in the first place.

Next, the circumnavigation trajectory labeled Worst is based on the distance 𝐴 would have to be from 𝑃 such that if 𝐴

were heading directly to 𝑃 when the latter began moving that 𝐴 would just barely avoid capture, hence �̂� = (1 + `)𝑅 + 𝑟 .

10



−3 −2 −1 0 1 2 3

−2

−1

0

1

2

x𝐴0

x𝐴 𝑓

𝑥

𝑦

𝑅

𝑅 + 𝑟

(1 + `)𝑅 + 𝑟

(1 − `)𝑅 + 𝑟

𝑡EZ
𝑓 = 7.34

𝑡⃝, Reach
𝑓

= 7.46

𝑡⃝, Worst
𝑓

= 8.44

𝑡
⃝, Apol
𝑓

= 7.036

Fig. 5 Example path planning problem with ` = 0.9, 𝑟 = 0.2, and 𝑅 = 2−𝑟
`+1 ≈ 0.95, roughly corresponding to the

example in [7, Fig. 4]. The highlighted portion of the green EZ trajectory indicates activation of the constraint,
i.e., (x𝐴(𝑡), 𝜓(𝑡)) ∈ 𝜕Z.

This trajectory is overly conservative because at no point along the trajectory is 𝐴 ever pointed towards 𝑃. Nonetheless,

this trajectory may be employed in practice due to the relative ease in estimating this worst-case distance as opposed

to computing a more realistic EZ shape (e.g., in higher fidelity scenarios where the EZ can only be computed via a

computationally expensive numerical procedure). Additionally, safety is guaranteed irrespective of the Agent’s heading.

This is in contrast with the Reach trajectory since the Agent’s heading must point tangentially or outside the capturability

region when it is on the boundary. The EZ-based path plan results in a time savings of 13% w.r.t. this path plan.

Finally, the circumnavigation trajectory labeled Apol is based on the distance 𝐴 would have to be from 𝑃 such that 𝐴

could just barely escape from 𝑃, hence �̂� = (1 − `)𝑅 + 𝑟 . This condition is described in detail in [9]. Navigating along

this trajectory is inherently riskier as it may require 𝐴 to perform an extreme maneuver in order to avoid being captured

by 𝑃 (unlike any of the other trajectories considered). In fact, when 𝐴’s position is such that 𝐴𝑃 = (1 − `)𝑅 + 𝑟 there is

only one heading which can guarantee escape: heading directly away from 𝑃. Depending on where 𝐴 is located when 𝑃

begins moving, performing this evasive maneuver could lengthen 𝐴’s trajectory considerably. This is a high price to pay

considering that the EZ-based path plan is only 4.32% longer. The degree of lengthening that the Pursuer can achieve

on the Evader’s path is out of the scope of this study but will be considered in future work. One instance of that problem

has been considered, for example, in [19].

V. Conclusion
This paper has established a more formal definition for an Engagement Zone and derived some basic EZs associated

with fundamental engagement models associated with pursuit-evasion and turret-evasion. The basic EZs presented in
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this paper capture the most salient aspects of the Pursuer-Agent and Turret-Agent engagements: namely the geometry

of the aspect angle and the relative differences in capability (i.e., maximum speeds, range, etc.). One of the main

advantages of utilizing EZs for path planning is that they encode an overall desire for Agent to go somewhere without

requiring an aggressive maneuver or active evasion should the Pursuer or Turret begin its pursuit. It was shown that

there is some advantage in terms of time savings in EZ-based navigation around a single range-limited Pursuer as

compared with circumnavigating the capturability region. Future work will focus on investigating worst-case path

lengthening in the event that the Threat decides to engage with the Agent while it is en route.
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