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Abstract— This paper considers a two agent scenario contain-
ing an observer and a non-maneuvering target. The observer is
maneuverable but is slower than the course-holding target. In
this scenario, the observer is endowed with a nonzero radius
of observation within which he strives at keeping the target
for as long as possible. Using the calculus of variations, we
pose and solve the optimal control problem, solving for the
heading of the observer which maximizes the amount of time
the target remains inside the radius of observation. Utilizing
the optimal observer heading we compute the exposure time
based upon the angle by which the target is initially captured.
Presented, along with an example, are the zero-time of exposure
heading, maximum time of observation heading, and proof that
observation is persistent under optimal control.

I. INTRODUCTION

Intelligence, Surveillance, and Reconnaissance (ISR) mis-
sions have been of great interest to the aerospace community
[1]–[4]. One goal of an ISR platform is the observation of
a target, whether it be moving or stationary. In this paper
we consider the observation of a faster but non-maneuvering
target by a slower observer.

The task of observation of slower ground targets by an
aerial platform were considered in [5]–[7]. In [5], a quad-
rotor utilizing a downward-pointing camera tracks a ground
vehicle restricted to a road network. In [6], an ISR platform
equipped with a gimbaled camera was considered, thus
allowing the ISR platform to observe a ground target at
various aspect angles. Similarly, Skydio, a startup company
aimed at personal unmanned air platforms, has considered
a quad-rotor aircraft for persistent surveillance of a mobile
ground target [7]. The quad-rotor platform performs persis-
tent surveillance and obstacle avoidance in order to recording
a designated mobile target.

While this paper considers a single observer and single
target, another has considered proximity based capture [8].
In [8], the pursuit-evasion game was terminated when the
pursuer and evader were within a defined proximity, this
work aims to consider how proximity can be maintained after
capture. Other works have considered coordinated observers
tasked with identifying a single mobile target [9], [10]. In
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[9], sensor coverage effectiveness for a single mobile target
and a group of mobile sensors was investigated. In their
work, the authors showed the connection between numbers
of searchers, the amount of searcher motion, and how that
trade-off was dependent on the amount of motion for the
searcher relative to the target. In [10], the coverage of a
mobile sensor network resulting from continuous movement
of sensors was studied. In their work, the authors took a
game theoretic approach and obtained the optimal mobility
strategy for sensors and intruders.

Investigation of differential games concerning the surveil-
lance of an evading agent were considered in [11]–[16]. In
these differential games a pursuer with a detection region was
pitted against an evader whose goal was to escape as soon
as possible. The differential game studied by Dobbie and
Taylor considered a fast pursuer with turn restrictions and
circular surveillance region against a slower maneuverable
evader capable of instantaneous changes in heading [11],
[12]. Different to Taylor’s work, Lewin imposed a turning
rate constraint on the pursuer and allowed the pursuer’s speed
to vary from full stop to a bounded maximum [13], [14].
Another differential game investigated by Fuchs involved a
fast pursuer with radar cross section was pitted against a
slower and less maneuverable evader [15]. In the game, the
pursuer strives to accumulate enough information about the
target to achieve a defined probability of identification while
the evader tries to evade the pursuer to remain undetected.

A closely related work by Garnett and Flennner is pre-
sented in [17]. In their work a model for maximal informa-
tion sharing between UAVs was posed and solved utilizing
optimal control. Also, the ISR platform was faster than the
targets being tracked and a polar function was utilized to
model sensor effectiveness. Because of model complexity
they required the use of a nonlinear program solver to
numerically find the optimal control which maximized the
sensing problem.

While the previous works have described optimal means
of conducting ISR missions when the ISR platform is faster
than the target, less common is the consideration of con-
ducting ISR on targets which are faster. In an early work
by Breakwell, a pursuit-evasion game was posed wherein a
slower pursuer was employed against a faster evader [18].
Breakwell, also considered a nonzero capture radius for the
slower pursuer. The approach taken by Breakwell solved for
the acquisition of a faster evader by a slower pursuer, but ISR
requires keeping the pursuer within the surveillance range of
the pursuer for as long as possible.



One reason why we consider the target to be faster than
the observer is for the modeling of air-to-air ISR missions.
In the event that a slower ISR platform has made contact
with a faster target, we consider the max-time observation
of the faster target, utilizing optimal control theory [19]. This
paper poses and solves for the heading of a slower observer
which results in max-time observation of the faster target.

II. OPTIMAL CONTROL

Consider the optimal observation of a faster, non-
maneuvering target. We define the constant velocities of the
observer (O) and the target (T ) as vO and vT respectively.
The complete state of the observation scenario is:

x = [xO, yO, xT , yT ] ∈ R4

where (xO, yO) and (xT , yT ) are the positions of O and
T respectively. Consider motion to be restricted to the 2-D
plane, commonly found in pursuit-evasion scenarios of Isaacs
[20]. The observer’s control variable is his instantaneous
heading angle uO(t) = ψ(t). The equations of motion for
the two agent scenario are the following:

ẋO = vO cosψ ẋT = vT cosφ

ẏO = vO sinψ ẏT = vT sinφ
(1)

where the course of the non-maneuvering target, φ, is con-
stant and is known by the observer. The control of the
observer is his heading: ψ ∈ [0, 2π). At the onset we
consider the target to be a distance R from the observer.
Also, the observer is at an aspect angle θ from the target,
pictorially shown in Fig. 1. This circular model assumes that
observation is independent of the observer’s heading. In this
paper we consider the time-optimal strategy of the observer,
O which maximize the time the fast target is kept under
observation.

Fig. 1. Initial Engagement Geometry

Without loss of generality, the speed ratio between the
observer and the target is defined as: α = vO/vT . In the
scenario, the target is faster than the observer and therefore:
0 < α < 1. Utilizing the speed ratio parameter, the non-
dimensional dynamics in (1) are re-written as follows:

ẋO = α cosψ ẋT = cosφ

ẏO = α sinψ ẏT = sinφ
(2)

Since the target is faster than the observer, escape from the
circular observation envelope is guaranteed. Moreover, the
termination set which represents the escape of the target from
the observation circle is defined as follows:

C = {x|R2 − (xO − xT )2 − (yO − yT )2 ≤ 0, t > 0} (3)

The terminal time, tf , is defined as the instant where the
state and time satisfies (3); at which time, the terminal state
is: x(tf ) = (xOf

, yOf
, xTf

, yTf
). Since our objective is

to maximize the time by which the target remains within
the circular observation radius, we consider the max-time
objective functional:

min J =

∫ tf

0

−1 dt (4)

The optimal time of observation is t∗f = min J subject to
the termination set in (3). The goal is to find the optimal ob-
server’s heading time history which minimizes the objective
cost functional in (4), namely:

ψ∗(t) = argmin
ψ

J (5)

We form the Hamiltonian:

H = λxO
α cosψ+λyOα sinψ+λxT

cosφ+λyT sinφ (6)

where the costates are λ = [λxO
λyO λxT

λyT ].

A. Necessary Conditions for Optimality:

First, we would like to formulate and draw conclusions
about the optimal control utilizing the first-order necessary
conditions for optimality. Utilizing the Hamiltonian in (6),
we may formulate the necessary conditions for optimality:

ẋ∗(t) =
∂H (x∗(t), λ∗(t), u∗O(t), t)

∂λ∗(t)
(7a)

λ̇∗(t) = −∂H (x∗(t), λ∗(t), u∗O(t), t)

∂x∗(t)
(7b)

0 =
∂H (x∗(t), λ∗(t), u∗O(t), t)

∂u∗O(t)
(7c)

and H (tf ) = 0. Where the superscript, ∗, represents
optimally. Evaluating the necessary condition described in
(7c):

0 =
∂

∂ψ
(λ∗xT

cosφ+ λ∗yT sinφ+ λ∗xO
α cosψ + λ∗yOα sinψ)

=− αλ∗xO
(t) sinψ∗(t) + αλ∗yO (t) cosψ

∗(t)

=− λ∗xO
(t) sinψ∗(t) + λ∗yO (t) cosψ

∗(t) (8)

Bringing the two terms in (8) to either side of the equation,
squaring, and using the trigonometric identity cos2 ψ∗ = 1−
sin2 ψ∗, one may obtain the following:

λ∗2xO
(t) sin2 ψ∗(t) = λ∗2yO (t)(1− sin2 ψ∗) (9)

Through algebraic manipulation of (9) one may obtain the
following:

sin2 ψ∗(t) =
λ∗2yO (t)

λ∗2xO
(t) + λ∗2yO (t)

(10)



Evaluating the necessary condition in (7b), we have four
equations, one for each costate:

λ̇∗xO
(t) = −∂H (x∗(t), λ∗(t), u∗O(t), t)

∂x∗O(t)
= 0 (11a)

λ̇∗xT
(t) = −∂H (x∗(t), λ∗(t), u∗O(t), t)

∂x∗T (t)
= 0 (11b)

λ̇∗yO (t) = −
∂H (x∗(t), λ∗(t), u∗O(t), t)

∂y∗O(t)
= 0 (11c)

λ̇∗yT (t) = −
∂H (x∗(t), λ∗(t), u∗O(t), t)

∂y∗T (t)
= 0 (11d)

From the necessary conditions in (11) we may infer that
the optimal costate trajectories are constant, i.e.: λ∗(t) =
λ∗ because the observer is holonomic. Moreover, since the
costates are constant, the optimal heading of the observer
is constant under optimal play. This result may be derived
from (10). Therefore, the resulting optimal trajectory of the
observer is a straight-line trajectory:

ψ∗(t) = ψ∗ = sin−1

 λ∗yO√
λ∗2xO

+ λ∗2yO

 (12)

B. Transversality Conditions

Next we consider the transversality conditions which may
be used to formulate the relationship between the states and
costates at final time:

∂h

∂x
(x∗(tf ), tf )− λ∗(tf ) = d

∂m

∂x
(x∗(tf ), tf ) (13)

We define h(x(tf ), tf ) as is the terminal cost of the objective
functional, λ(tf ) as the costates at final time, d as a slack
variable, and m(x(tf ), tf ) as the terminal manifold. From
(4), the terminal cost in the objective cost functional is
constant, ∂h

∂x = 0. We defined the terminal manifold in (3)
and therefore:

m(x∗(tf ), tf ) = (x∗O(tf )− x∗T (tf ))
2

+ (y∗O(tf )− y∗T (tf ))
2 −R2

(14)

Substitution of (14) in to the transversality condition (13) we
obtain the following:

− λ∗(tf ) = d
[
∂m
∂xT

∂m
∂yT

∂m
∂xO

∂m
∂yO

]T
(15)

Therefore:

λ∗xT
=

∂m

∂xT
= 2d(xO − xT ) (16a)

λ∗yT =
∂m

∂yT
= 2d(yO − yT ) (16b)

λ∗xO
=

∂m

∂xO
= 2d(xT − xO) (16c)

λ∗yO =
∂m

∂yO
= 2d(yT − yO) (16d)

Taking the square root of (10) and substituting the costates
from (16) we obtain the following:

sinψ∗(tf ) =
±2d(yTf

− yOf
)√

4d2(xTf
− xOf

)2 + 4d2(yTf
− yOf

)2

(17)

Simplifying (17), we obtain a relationship between the states
of the observer and target at the final time, tf :

sinψ∗(tf ) =
±(yTf

− yOf
)

R
(18)

From (18) we see that the angle from the observer to the
target at final time is the same as the optimal heading. An
illustration of the optimal engagement is shown in Fig. 2.

Fig. 2. Optimal Two Agent Engagement Geometry

III. MAIN RESULT

Knowing the course of the target, the optimal heading
of the observer which maximizes the time of observation
may be analytically obtained. Without loss of generality, the
observer-target scenario is rotated about the target such that
the target velocity is aligned with the vertical axis as shown
in Fig. 2.

A. Optimal Observer Heading

The necessary conditions of optimality (7) have shown
that optimal headings are constant (12). The transversality
conditions (13) have shown that the angle from the observer
to the target at final time is the same as the optimal heading
(18). Using the law of cosines, the optimal heading of the
observer may be obtained.



Theorem 1: The optimal heading of the observer
which maximizes observation time is: ψ∗ =

cos−1
(

(α2−1) sin γ
α2+2α cos γ+1

)
; where α ∈ (0, 1) is the speed

ratio and γ ∈ [−π, π] is the bearing from the target to the
observer.

Proof: Using the law of cosines for the triangle,
4OST :

OS
2
= TS

2
+R2 − 2RTS cos γ (19)

Utilizing the speed ratio, the distance traversed by the target
is the same as α multiplied by the distance traversed by the
observer and therefore:

OS = αTS +R (20)

Substituting (20) into (19):

(αTS +R)2 = TS
2
+R2 − 2RTS cos γ (21)

Expanding (21):

α2TS
2
+R2 + 2αRTS = TS

2
+R2 − 2RTS cos γ (22)

Canceling R2 terms on either side of the equals sign in (22)
the following is obtained:

α2TS
2
+ 2αRTS = TS

2 − 2RTS cos γ (23)

Dividing both sides of (23) by TS:

α2TS + 2αR = TS − 2R cos γ (24)

Solving (24) for TS a formulation for the observed time is
obtained as a function of the exposure radius, R, speed ratio
α and initial target-observer angle, γ:

TS =
2R(α+ cos γ)

1− α2
(25)

Since the cosine of an angle is the adjacent distance over the
hypotenuse, the following is obtained:

cos(π − ψ) = R sin γ

αTS +R
(26)

We may substitute (25) into (26) and therefore

− cosψ =
R sin γ

α 2R(α+cos γ)
1−α2 +R

(27)

Through algebraic manipulation of (27) one obtains the
optimal observer heading

ψ∗ = cos−1

(
(α2 − 1) sin γ

α2 + 2α cos γ + 1

)
(28)

Special Case: γ = 0

When the angle of approach, γ, is zero, we see from (28)
that the speed ratio does not come into play and the optimal
heading of the observer is ψ = π/2 as expected.

Invariance of Observation Range

Next, we show that once the observer is within a range, R,
of the target, under optimal play, the target remains within the
observation range until the termination set is reached. Fig. 2
describes the geometry for the optimal two-agent scenario.

Theorem 2: ρ < R ∀ t ∈ (t0, tf ), where ρ is the observer-
target range at any time from the open interval starting at t0
and ending at tf .

Proof: Utilizing the Law of Cosines to analyze 4OST
we obtain the following relationship:

TO
2
= TS

2
+(OQ+QS)2− 2TS(OQ+QS) cosω (29)

We recognize that OT = R, QS = R, and TS = αOQ.
Substitution into (29), we obtain:

R2 = TS
2
+ (αTS +R)2 − 2TS(αTS +R) cosω (30)

Expanding and solving (30) for cosω:

cosω =
TS(1 + α) + 2αR

2(αTS +R)
(31)

Now consider a future time, t1 ∈ (t0, tf ). Using the Law of
Cosines for 4FHS:

ρ2 = FS
2
+HS

2 − 2FS HScosω (32)

We recognize that HQ = αFS and HS = HQ + R.
Substituting these into (32):

ρ2 = FS
2
+ (αFS +R)2 − 2FS(αFS +R)cosω (33)

Substituting (31) into (33):

ρ2 =FS
2
+ (αFS +R)2

− 2FS(αFS +R)
TS(1 + α) + 2αR

2(αTS +R)

(34)

Manipulating (34):

ρ2 =R2 +
FSR

(αTS +R)

(
FS − TS

) (
1− α2

)
(35)

Notice in (35)

ρ2 =R2 +
FSR

(αTS +R)︸ ︷︷ ︸
Positive

(
FS − TS

)︸ ︷︷ ︸
Negative

(
1− α2

)︸ ︷︷ ︸
Positive

(36)

Therefore, for values of t1 ∈ (t0, tf ), ρ < R.

B. Observation Limaçon

The function which describes the target distance while
being observed can be found in (25). The target distance
while being observed is a function of the bearing from
the target to the observer, γ; the radius of observation, R;
and speed ratio, α. Because we normalize the velocity with
respect to the target vehicle, the range TS = vT t = t.
Substituting the time of exposure, t into (25) the polar
equation for exposure time is the following:

tf =
2R(α+ cos γ)

1− α2
(37)



Plotting the time of exposure as a function of the target to
the observer, γ, produces a limaçon whose cusp is located
at the target location. Utilizing (37), we derive the angle
which describes the range of headings the target could take
which result in a zero-observation time (ZOT). Note that
zero-time of exposure solutions exist when tf = 0. From
(37), values of γ which result in non-positive values of tf
represent angles for which the observation time is zero. Thus,
setting the length tf ≤ 0, we find from (37):

2R

1− α2
(α+ cos γ) ≤ 0 (38)

From (38), we find the regions where the observer is unable
to observe the target occurs when the angle γ lies in the
following range:

γZOT ∈ [cos−1 (−α) , π] ∪ [−π,− cos−1 (−α)] (39)

Assuming the observer implements the optimal heading
which maximized observation time of the faster target,
eq. (25) can be algebraically manipulated to provide the
observer-target headings which guarantee a desired obser-
vation time. The following is the equation which describes
the angle γ which guarantees the desired observation time,
t.

γ = cos−1

(
(1− α2)t− 2αR

2R

)
(40)

It should be noted that the guarantees for observation time
are bounded by

t ∈
[
0,

2R(α+ 1)

1− α2

]
(41)

IV. EXAMPLE

Consider the scenario with capture radius, R = 1.00;
speed ratio, α = 0.8; target’s constant heading, φ = π/2 rad;
and target-observer angle, γ = 7/18π rad. Utilizing (28), the
optimal observer heading, ψ∗ is computed and is ≈ 1.726
rad. Utilizing the calculated optimal observer heading, the
max-time observation of a faster target can be seen in Fig. 3.
In the figure, the observer is represented by the blue line, the
observation radius is represented by the dashed line, and the
faster target is represented by the red line.

Fig. 3. Observation Scenario

For the scenario described in Fig. 3, consider the observer-
target range throughout the engagement. In Theorem 2 we
showed that the observer-target range remains less than the
observer range under optimal play. In Fig. 4, the observer
range is represented by the dashed black line and the instanta-
neous observer-target range is represented by the solid black
line. As we have predicted, the observer-target range remains
less than the observer range for the entire engagement, as
required.

Fig. 4. Scenario Observation Range

Next, consider arbitrary observer-target aspect angles: γ ∈
[−π, π]. In the event that the observer selects the optimal
heading described by (28), the time of observation may be
computed using (37). In Fig. 5 the optimal observation time
is found for arbitrary aspect angles, γ. From the figure, the
blue line represents all cases where the observer is able
to observe the target for a non-zero amount of time. The
green line represents the computed observation time from
(37). While the negative values signify that the observer
is unable to observer the target for any amount of time.
The green dot designates the angle γZOT for which there is
zero observation time. Finally, the black dot is the computed
maximum observation time, which occurs when γ = 0.

Fig. 5. Time of observation of the Evader by the Pursuer

A plot which describes the observation time for arbitrary
observer-target headings was shown in Fig. 5. However, how



this relates to an actual engagement scenario may be unclear.
Plotting the observation time in a polar sense for each aspect
angle, γ, the limaçon which describes the observed time for
each aspect angle, γ, can be seen in Fig. 6. In the figure,
the blue shaded region represents the region of observability
of the target by the observer for all possible observer-target
headings. The green region represents the target headings
for which the observer would have no observation of the
faster target. Considering, the scenario in our example, the
red line represents the course taken by the target, the blue line
represents the observer under optimal play, and the dotted
black lines represent the observer’s range at the beginning
and end of the engagement.

Fig. 6. Observation Limaçon and Zero-Observation Region

V. CONCLUSIONS

Using a circular observation region centered at the ob-
server and commanding the instantaneous heading of the
observer, we maximized the time by which the target remains
inside the observation range. Utilizing the theory of optimal
control, we have posed and solved for the optimal instanta-
neous observer heading required to maximize the observation
of a faster but non-maneuvering target. We showed the
heading which maximizes the time of observation is constant.
Further, the optimal heading is only dependent upon the rela-
tive bearing of the target to the observer as well as the speed
ratio parameter. Next, we showed that no intermittent contact
occurs under optimal control, e.g. the observation range is
less than the radius of observation for the entire engagement.
Finally, we present the observation time as a function of
observer-target aspect angle. Plotting the observation time
as a function of the observer-target aspect angle, we found
the limaçon describing target observation time. Utilizing the
limaçon we were able to illustrate the target observation
based upon the target’s bearing.
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