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Abstract—In pursuit-evasion the objective of the pursuer is to
capture the evader. In this work, the faster pursuer is modeled
to have limited range and therefore optimal strategies for the
pursuer and evader change. Depending upon the range limits of
the pursuer the evader may evade capture by the pursuer. This
paper describes the optimal strategies and nuances that appear
for point-capture or when the pursuer is endowed with a non-
zero capture radius.

Index Terms—pursuit-evasion, differential games, multi-agent
systems

I. INTRODUCTION

Pursuit-Evasion considers two parties labeled as either “pur-
suers” or “evaders.” In the general sense, the pursuers strive to
capture the evaders while the evaders strive to escape capture
by the ensuing pursuers. The conflict that exists between
these two parties has been very well studied as a differential
game [1]–[3]. While prior art has considered the pursuer to
have unlimited resources, this paper considers a range-limited
pursuer in an effort to provide necessary realism to the general
class of 1-v-1 pursuit-evasion. In this case, the limit on the
pursuer’s range may be due to limited fuel onboard or even a
limit on the distance it can travel from a fixed location (e.g.,
communication station or base). Two capture conditions for
the pursuer are considered: capture through collocation (i.e.,
point capture) and capture when the pursuer is endowed with
a non-zero capture radius.

Concerning point capture, Rufus Isaacs rightly pointed out
that for a two-dimensional, planar engagement that point cap-
ture results in a degenerate zero-dimensional terminal surface
whereas the terminal surface ought to be of one dimension less
than the original scenario [1]. This is most obvious within the
Homicidal Chauffeur Differential Game [4] wherein a turn-
constrained agent pursues a slower agent who can turn on a
dime. Point capture, in this case is not even a mathematical
possibility as the evader can always side-step the pursuer (i.e.,
into the latter’s turn-circle) and avoid capture. Nonetheless,
some differential game solutions have been obtained in cases
where all agents move with simple motion and the game ends
in point capture [5].

A non-zero capture radius for an ensuing pursuer has
been previously investigated in the context of pursuit-evasion
scenarios with simple motion, one evader, and either one or
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two pursuers. Oyler described the dominance regions to be
larger as a result of the pursuer having non-zero capture radius
[6]. Fuchs et al. treated the two-pursuer single-evader (two
cutters and fugitive ship game) wherein the fast pursuers have
the same speed and a finite capture radius and obtained the
solution, but not in closed-form [7]. Wasz also considered
non-zero capture radius for this scenario [8], [9]. Casini et al.
considered a special case of this scenario in which all three
agents have the same speed [10]. Vlassakis et al. considered
the case where the pursuers have different speeds [11]. Von
Moll et al. investigated scenarios in which one or more
pursuers implement the Pure Pursuit geometric rule and are
have a non-zero capture radius [12], [13].

Several other pursuit-evasion scenarios have been consid-
ered in the context of non-zero capture radius. In a work by
Fuchs et al. the active target defense scenario was solved for
an attacker with a finite capture radius [14]. In the scenario,
a pursuing attacker strives to capture a target vehicle that
is teamed with a friendly defender. In [15], the Cartesian
ovals for cases where the pursuer is endowed with a non-zero
capture radius and the pursuer/evader speed ratios are greater
than and less than 1 are presented. In [16] the containment
of a faster evader is considered when multiple pursuers have
identical non-zero capture radius. In all of these works, all
parties are assumed to have unlimited range.

There is also a body of work concerning pursuit-evasion
scenarios with some fixed limit - either a fixed final time,
or constraints imposed on the pursuer. In the case that an
agent takes a straight line path (which often occurs for
extremal controls for simple motion agents) a fixed final time
is equivalent to a limit on range. Along these lines, Chen
et al. recently analyzed a reach-avoid pursuit-evasion game
with a fixed time [17]. Some work has also been done on
cases where the pursuers have either integral constraints on
the control effort (which, again, could be mapped to fuel
usage) and/or instantaneous constraints on control effort [18].
In addition, Bakolas et al. have considered the so-called relay
pursuit scenario in which a team of pursuers are scattered
over an area but only one pursuer actively pursues the evader
at a given time. Although a range limitation is not explicitly
mentioned there it’s clear that such a group pursuit strategy
allows the inactive pursuers to conserve their control effort
(e.g. fuel). In addition to having limitations in range, time, or
control effort, it could be the case that the pursuer has limited



sensing. Reference [19], for example, considers a pursuer with
self-triggered, intermittent sensing. For certain applications in
which sensing is expensive one must consider the interplay
between the sensing control (i.e., when to sense) and motion
control (i.e., where to aim). Finally, the concept of a pursuers’
reachable region can be useful as a mechanism for evader path
planning (c.f., e.g., [20]).

This paper considers a range-limited, faster pursuer versus
an evader, both moving with simple motion. It is assumed
that the heading of the evader is known to the pursuer. The
contributions of the paper are: 1) the optimal (i.e., minimum
time) heading for the pursuer is shown to be a straight line, 2)
the optimal pursuer heading and distance (which is analogous
to time, in this case) are provided in closed form for the case
of point capture, and 3) likewise for the case of non-zero
capture radius. For either capture condition, there are three
possibilities which arise as a result of the pursuer’s range
limit: 1) the pursuer’s and evader’s reachable regions do not
intersect, meaning capture is not possible, or 2) the evader’s
reachable region is a subset of the pursuer’s, meaning capture
is inevitable, or 3) the intersection of their reachable regions is
a subset of the evader’s, meaning capture may or may not be
possible depending on the evader’s heading. In the last case,
the analytic expressions for the critical evader headings for
which capture is just barely possible are provided.

The remainder of this paper is organized as follows. Sec-
tion II defines the vehicle dynamics and objectives surrounding
the pursuit-evasion scenario where agents exhibit simple mo-
tion. In Section III, the locus of pursuer-evader interceptions,
when the interception is defined through point-capture, is
presented. Next, in Section IV the pursuer is assumed to have
limited range and capture occurs through point-capture. After
that, in Section V a faster pursuer endowed with a non-zero
capture radius is considered. Next, in Section VI, the pursuer
and evader strategies when the pursuer is range-limited and the
pursuer is endowed with non-zero capture radius is presented.
Examples are presented along with the derivations. Finally,
in Section VII concluding remarks are made, highlighting the
various aspects of these planar engagements.

II. PROBLEM

Consider a pursuer, P and evader E. The pursuer aims to
capture the evader in minimum time while the evader strives
to prevent capture. The pursuer and evader in Cartesian coor-
dinates are (xP , yP ) ∈ R2 and (xE , yE) ∈ R2, respectively.
The pursuer is faster than the evader and their speeds are vP
and vE , respectively. In general, it is assumed that the pursuer
is faster than the evader and therefore: µ = vE/vP is bounded,
0 < µ < 1.

The pursuer and evader are assumed to exhibit simple
motion and the dynamics for the pursuit-evasion scenario is
as follows:

ẋP = vP cosψP ,

ẏP = vP sinψP ,

ẋE = vE cosψE ,

ẏE = vE sinψE .

(1)

where the control for the pursuer is its heading, ψP ∈ [0, 2π),
and the control for the evader it its heading, ψE ∈ [0, 2π).

A differential game develops between the pursuer and
evader as described by Isaacs [1]. Because the pursuer and
evader exhibit simple motion, it has been shown that their
optimal strategies are straight-line trajectories.

The Hamiltonian for the resulting differential game is

H = pxP
vP cosψP + pyP vP sinψP+

pxE
vE cosψE + pyEvE sinψE

(2)

where p = (pxP
, pyP , pxE

, pyE )
⊺ represent the costates.

The Pontraygin Minimum Principle (PMP) yields necessary
conditions for optimality in the pursuit-evasion differential
game.

ẋ∗(t) = ∂H (x∗(t),p(t),ψ∗
P (t),ψ∗

E(t),t)
∂p , (3)

ṗ(t) = −∂H (x∗(t),p(t),ψ∗
P (t),ψ∗

E(t),t)
∂x , (4)

0 =
∂H (x∗(t),p(t),ψ∗

P (t),ψ∗
E(t),t)

∂ψP
, (5)

0 =
∂H (x∗(t),p(t),ψ∗

P (t),ψ∗
E(t),t)

∂ψE
. (6)

and H (tf ) = 0. The superscript, ∗ represents optimality.
Evaluating the necessary conditions in (4), the costates are
found to be constant, as expected:

ṗxP
(t) = 0, ṗyP (t) = 0, ṗxE

(t) = 0, ṗyE (t) = 0. (7)

Evaluating the partials in (5) and (6),

0 = −pxP
sinψ∗

P + pyP cosψ∗
P , (8)

0 = −pxE
sinψ∗

E + pyE cosψ∗
E (9)

In (7), the costates under play for the pursuer and evader are
found to be constant. By (8) and (9) the optimal headings for
the pursuer and the evader are found to be constant. Therefore,
optimal strategies for the pursuer and evader are constant
bearing trajectories – optimal strategies are straight-lines.

III. POINT CAPTURE

Consider a fast pursuer and slower evader. The pursuer cap-
tures the evader using point capture – the pursuer and evader
are collocated at final time. When the state belongs to the
point capture set, Cpc ≜ {x|(xP − xE)

2 + (yP − yE)
2 = 0},

the evader has captured the evader. As shown earlier, since
both the pursuer and evader exhibit simple motion (both agents
may turn instantaneously), the costates under optimal play
are constant by (7) and the resulting optimal pursuer and
evader trajectories are straight lines. Recall the speed ratio:
µ = vE/vP < 1. The distance traversed by the agents (prior
to point-capture) is proportional:

EI = µPI. (10)

where E is the initial location of the evader, P is the initial
location of the pursuer, and I is the location where the evader
captures the pursuer, this is depicted in Fig. 1. Squaring both
sides:

EI
2
= µ2PI

2
. (11)
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Fig. 1. The locus of point-capture interceptions of the evader by the faster
pursuer (whose range is unlimited) is described by Apollonius circle.

Define the Cartesian coordinates whose x-axis is aligned from
E to P , and E is at the origin (0, 0). Therefore, in this frame,

EI
2
= x2 + y2

PI
2
= (d− x)2 + y2

(12)

Substitution of (12) into (11), the following is obtained:

x2 + y2 = µ2((d− x)2 + y2). (13)

Through algebraic manipulation of (13) the following may be
obtained as explicitly shown in [21],(

x− µ2d

1− µ2

)2

+ y2 =

(
µd

1− µ2

)2

(14)

From the form of (14), a circle in the Cartesian plane is defined
and shown in Fig. 1, where the distances,

OE =
dµ2

1− µ2
, EI =

dµ

1− µ2
. (15)

The Apollonius circle shown in Fig. 1 provides the locus of
all possible interceptions of the evader by the pursuer under
the assumption that the pursuer is not range-limited. From the
law of sines the optimal strategy for the pursuer, provided the
evader’s choice of heading is obtained:

PI

sin(π − ψE)
=

EI

sinψP
=

µPI

sinψP
(16)

solving for the optimal heading ψP :

ψP = sin−1(µ sinψE) (17)

From the law of cosines:

PI
2
= µ2PI

2
+ d2 − 2dµPI cos(π − ψE) (18)

Note that cos(π − ψE) = − cos(ψE).

PI
2
= µ2PI

2
+ d2 + 2dµPI cosψE (19)

Using the quadratic equation, PI may be obtained,

PI =
−b±

√
b2 − 4ac

2a
(20)

where

a = (1− µ2), b = −2dµ cosψE , c = −d2.

The positive case is of interest because the distance PI is a
strictly positive quantity. Through algebraic manipulation one
obtains

PI =
d

1− µ2

(
µ cosψE +

√
1− µ2 sin2 ψE

)
. (21)

Using (10), EI can be obtained.
In summary, for a pursuer with unlimited range that captures

an evader using point-capture, the following are the pursuer’s
optimal heading and range to capture, provided the evader’s
choice of heading, ψE , and speed ratio µ.

ψP = sin−1(µ sinψE)

PI =
d

1− µ2

(
µ cosψE +

√
1− µ2 sin2 ψE

)
IV. RANGE-LIMITED POINT CAPTURE

Shifting the Apollonius circle as defined in (14) such that
the Pursuer is located at the origin, P = (0, 0) and the evader
is located at E = (d, 0) means that the resulting Apollonius
circle is shifted along the x-axis and is(

x−
(
d+

µ2d

1− µ2

))2

+ y2 =

(
µd

1− µ2

)2

. (22)

The pursuer may reach any point in the circle

x2 + y2 = R2. (23)

Define the following regions of Cartesian space:

E ≜
{
(x, y)

∣∣∣ (x−
(
d+ µ2d

1−µ2

))2
+ y2 ≤

(
µd

1−µ2

)2 }
P ≜

{
(x, y)

∣∣∣x2 + y2 ≤ R
}

The region E defines the reachable region of the evader until
it is captured by a pursuer without limited range. The region
P defines the reachable region of the pursuer. Three cases of
interest exist:

1) P ∩ E = ∅. The reachable region of the pursuer
does not intersect the Apollonius circle. Capture is not
possible, independent of the evader’s choice of headings.

2) P ∪ E = P . The reachable region of the pursuer
completely envelops the Apollonius circle. Capture is
ensured and dictated by the Apollonius circle.

3) P ∩ E ̸= ∅ and P ∪ E ̸= P . There exists an interval
of headings for which the evader can escape capture
because the pursuer is range-limited.

A. Evader Always Escapes

The evader always escapes when the reachable region of
the pursuer does not intersect the Apollonius circle between
the pursuer and evader. Such a case is shown in Fig. 2. This
occurs when

R < d+
µ2d

1− µ2
− µd

1− µ2
. (24)
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Fig. 2. The pursuer’s range is too small and it is unable to reach the evader,
independent of the evader’s choice of heading.

Simplifying, (24) can be rewritten as

R <
d

1 + µ
. (25)

In this case, the pursuer’s range is too small and it is unable to
capture the evader. In summary, when the pursuer is unable to
reach the Apollonius circle, P∩E = ∅, the pursuer’s strategy
and time to reach the interception point are as follows:

ψP = undefined

PI = ∞

B. Evader Capture Guaranteed

In the event that the pursuer’s range is so large that it
completely envelops the Apollonius circle, capture is ensured
and dictated by the Apollonius circle. This case is shown in
Fig. 3. This scenario occurs when the following is true

R ≥ d+
µ2d

1− µ2
+

µd

1− µ2
. (26)

Simplifying, (26) can be rewritten as

R ≥ d

1− µ
. (27)

In summary, when the pursuer’s reachable region com-
pletely encompasses the Apollonius circle, P ∪ E = P , and
therefore the optimal heading for the pursuer and the range
until interception is provided by the Apollonius geometry:

ψP = sin−1(µ sinψE)

PI =
d

1− µ2

(
µ cosψE +

√
1− µ2 sin2 ψE

)
C. Limited Capture Region

By (25) and (27), it follows that there exist an interval of
headings for which the evader can escape point-capture by a
range-limited pursuer when the following holds,

d

1 + µ
≤ R <

d

1− µ
. (28)

OEP x̂

µ2d
1−µ2

µd
1−µ2

R

d

Fig. 3. The pursuer’s range is so large that it completely envelops the
Apollonius circle and it is able to capture the evader, independent of the
evader’s choice of heading.

This is demonstrated in Fig. 4. The location of the interception
points are obtained by substituting (23) into (14),(

x−
(
d+

µ2d

1− µ2

))2

+ (R2 − x2) =

(
µd

1− µ2

)2

. (29)

Solving (29) for x, the following is obtained,

xI =
d2(1− µ2) + 2µ2d2 +R2(1− µ2)

2d(1 + µ2)
. (30)

Substituting (30) into (23), the y-coordinate for the intercep-
tion points are:

yI = ±
√
R2 −

(
(d2+R2)(1−µ2)+2µ2d2

2d(1+µ2)

)2
(31)

The headings for which the evader escapes the range-limited
pursuer are

ψE ∈
[
0, atan

(
yI,+
xI

))
∪
(
atan

(
yI,−
xI

)
, 2π

]
. (32)

Alternatively, one may obtain the safe range of evader head-
ings via the Law of Cosines. Consider, for example, the
triangle △PI1E; using π−ψE as angle, the Law of Cosines
is

PI
2
= d2 + EI

2 − 2dEI cos (π − ψE) . (33)

Substituting in PI = R, EI = µR, and solving for ψE gives

ψE, crit = cos−1

((
1− µ2

)
R− d2

2dµR

)
, (34)
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Fig. 4. The pursuer’s range intersects the Apollonius circle and there exist
an interval of headings that the evader can take that ensure that it can avoid
point-capture by the pursuer (green).

and thus evader headings which satisfy the following are safe:

cosψE > cosψE, crit. (35)

This is equivalent to (32).
In summary, provided the evader’s choice of heading, the

pursuer may or may not be able to capture the evader. The
following describes the optimal strategy for the pursuer.

ψP =

{
sin−1(µ sinψE) ψE /∈ Eq.(32)

undefined ψE ∈ Eq.(32)

PI =

{
d

1−µ2

(
µ cosψE +

√
1− µ2 sin2 ψE

)
ψE /∈ (32)

∞ ψE ∈ (32)

V. NON-ZERO CAPTURE RADIUS

Consider a faster pursuer that is endowed with a non-zero
capture radius, ρ. The pursuer is able to capture the evader
when the evader is within a specified capture radius, ρ > 0.
Capture is defined when the state reaches the capture set Crc ≜
{x|(xP − xE)

2 + (yP − yE)
2 = ρ2}. As shown earlier, since

both the pursuer and evader exhibit simple motion (both agents
may turn instantaneously), the costates under optimal play are
constant by (7) and the resulting optimal pursuer and evader
trajectories are straight lines. The outcome of such a trajectory
under the assumption that the pursuer is not range-limited can
be seen in Fig. 5.

The objective of the non-zero capture radius problem is to
obtain the heading for the pursuer that captures the constant
bearing evader in minimum time.

A. Pursuer Distance

Provided the evader’s choice of heading, the distance that
the pursuer travels in order to capture the slower evader in
minimum time is obtained. Capture is assumed to occur when

E

P
ψEψP

vP vE

Pf

Ef

x̂

d

ρ

PPf

µPPf

Fig. 5. When the pursuer is endowed with a non-zero capture radius the
resulting locus of points dictating the capture of a slower evader by a faster
pursuer is a quartic plane curve also referred to as a Cartesian oval.

the state of the systems is in the capture set x(tf ) ∈ Crc.
Consider the triangle: △PEfE in Fig. 5. From the law of
cosines:

(PPf + ρ)2 = d2 + µ2PPf
2 − 2dµPPf cos(π − ψE) (36)

Simplifying and factoring (36) in terms of PPf , the following
is obtained:

(1−µ2)PPf
2
+(2ρ− 2dµ cosψE)PPf +ρ

2−d2 = 0. (37)

A quadratic equation in PPf is obtained thereby obtaining
the distance that the pursuer travels prior to the capture of
the evader, provided the evader’s choice of heading ψE , the
speed ratio of the two agents, µ, and the separation of the two
agents, d.

PPf =
dµ cosψE−ρ±

√
(ρ−dµ cosψE)2−(1−µ2)(ρ2−d2)

(1−µ2) (38)

It must be the case that d > ρ, otherwise the evader is already
within the capture radius of the pursuer. Therefore, the term
inside the radical is always positive (since µ < 1). Moreover,
the entire square root term is larger than the dµ cosψE − ρ
term, and thus, for PPf to be positive, we only consider the
positive version of this expression:

PPf =
dµ cosψE−ρ+

√
(ρ−dµ cosψE)2−(1−µ2)(ρ2−d2)

(1−µ2) . (39)

B. Pursuer Heading

The heading that the pursuer takes in order to capture the
evader in minimum time is obtained using the law of sines.

PPf + ρ

sin(π − ψE)
=
EEf
ψP

=
µPPf
sinψP

. (40)

Solving (40) for ψP as a function of ψE ,

ψP = sin−1
(
µPPf sinψE

PPf+ρ

)
(41)

where PPf is obtained in (38), ρ is the capture radius, µ is
the speed ratio, and ψE is the evader’s choice of heading.
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Fig. 6. The range limited pursuer has an extended reachable region due to its
capture radius, ρ. This region does not intersect the Cartesian oval between
the pursuer and evader

In summary, provided the evader’s choice of heading, when
the pursuer has a non-zero capture radius, the heading and
range of the pursuer can be obtained in closed form.

PPf =
dµ cosψE−ρ+

√
(ρ−dµ cosψE)2−(1−µ2)(ρ2−d2)

(1−µ2)

ψP = sin−1
(
µPPf sinψE

PPf+ρ

)
From this result the Cartesian oval that describes the safe-

region of the evader prior to capture by the pursuer can be
obtained. The distance the evader travels is proportional to
the distance traveled by the pursuer,

EEf = µPPf . (42)

Substitution of (38) into (42) yields the polar equation for the
Cartesian oval,

EEf (ψE ;µ, d) =
µ

1−µ2 (dµ cosψE − ρ

+
√

(ρ− dµ cosψE)2 − (1− µ2)(ρ2 − d2))
(43)

VI. RANGE-LIMITED NON-ZERO CAPTURE RADIUS

Define the following regions in Cartesian space:

Eρ ≜
{
E† = (x, y) | EE† ≤ EEf (∠EE

†)
}

Pρ ≜
{
(x, y) | x2 + y2 ≤ R+ ρ

}
,

where EEf is given by (43). As in Section III, there are three
possibilities for the outcome on the scenario which depends
on the existence (or non-existence) of overlap between these
two regions.

A. Evader Escape Guaranteed

Assume that the evader heads directly toward the pursuer,
we aim to find the range, R, such that

d− µR > R+ ρ (44)

solving for R, the inequality is

R <
d− ρ

1 + µ
(45)

Such a case is illustrated in Fig. 6.

E

P

x̂

R ρ

d

Fig. 7. The combination of the pursuer’s range and capture radius are
such that its total reachable region covers the Cartesian oval representing the
evader’s reachable region. Given ψE , the pursuer can guarantee the capture
of the evader.

In summary, when the pursuer is unable to reach the
evader’s reachable region, Pρ∩Eρ = ∅, the pursuer’s strategy
and time to reach the interception point are as follows:

ψP = undefined

PPf = ∞

B. Evader Capture Guaranteed

Similarly, capture of the evader is guaranteed if capture
occurs when the evader runs directly away:

d+ µR ≤ R+ ρ (46)

Solving for R, the inequality is

R ≥ d− ρ

1− µ
(47)

In this case, the pursuer’s reachable region completely overlaps
the evader’s reachable region, Eρ ⊂ Pρ, as seen in Fig. 7.
Therefore, the optimal heading for the pursuer and range until
interception, given the evader’s heading, is provided by the
Cartesian oval geometry:

ψP = sin−1
(
µPPf sinψE

PPf+ρ

)
PPf =

dµ cosψE−ρ+
√

(ρ−dµ cosψE)2−(1−µ2)(ρ2−d2)
(1−µ2)
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Fig. 8. The pursuer’s reachable region intersects the evader’s Cartesian oval
and thus there is an interval of evader headings for which capture is possible
and an interval for escape is guaranteed.

C. Limited Evader Capture

The Cartesian oval that represents the capture of the evader
by the pursuer with ρ > 0 is of interest. Define β = vP

vE
> 1.

The Cartesian Oval is√
x2 + y2 = β

√
(x− xE)2 + y2 + ρ (48)

x =
2ρR− ρ2 + β2x2E −R2(1− β2)

2β2xE
(49)

The critical evader headings (i.e., the limiting case of
capture) which lead to the evader’s capture at the points I2
or I1 may be obtained by substituting PPf = R into (36) and
solving for ψE :

ψE, crit = cos−1

(
(R+ ρ)− d2 − µ2R2

2dµR

)
. (50)

Thus, the headings for which the evader escapes the range-
limited, non-zero capture radius pursuer satisfy

cosψE > cosψE, crit. (51)

If the evader’s heading is such that cosψE ≤ cosψE, crit then
the corresponding pursuer heading which leads to capture is
given by (41).

In summary, provided the evader’s choice of heading, the
pursuer may or may not be able to capture the evader. The
following describes the optimal strategy for the pursuer

ψP =

{
sin−1

(
µPPf sinψE

PPf+ρ

)
if cosψE ≤ cosψE, crit,

undefined otherwise

PPf =

{
(39) if cosψE ≤ cosψE, crit,

∞ otherwise

VII. CONCLUSIONS

Much of the pursuit-evasion literature has focused on the
case in which the pursuer is unconstrained - in particular, the
pursuer is assumed to have infinite range. In reality, whether
due to limited on-board fuel or finite communication ranges,
a pursuer is more likely to have a limit imposed on its range.

In the case that the pursuer moves in a straight line (as in this
work), this becomes analogous to scenarios with a fixed time
horizon. This work is based on a fairly restrictive assumption
that the pursuer has knowledge of the evader’s heading.
Nevertheless, this analysis provides worst-case guarantees (for
the evader) for scenarios in which the evader’s heading is
not known to the pursuer. Given the evader’s heading, the
optimal pursuer heading and travel distance leading to capture
are provided for both the point capture and non-zero capture
radius cases. These results provide a basis for considering
more complex scenarios such as two range-limited pursuers
versus a single evader.

ACKNOWLEDGMENT

This paper is based on work performed at the Air Force
Research Laboratory (AFRL) Control Science Center. Distri-
bution Unlimited. 28 Apr 2023. Case #AFRL-2023-2058.

REFERENCES

[1] R. Isaacs, Differential Games: A Mathematical Theory with Applications
to Optimization, Control and Warfare. New York: Wiley, 1965.
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