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Abstract— This paper considers a three agent scenario con-
sisting of a pursuer, evader, and a defender. The pursuer’s
objective is to capture the non-maneuvering evader in minimum
time while a defender aims at maximize contact with the
pursuer by keeping the pursuer inside his circular engagement
zone for as long as possible; the pursuer is considered to be
faster than both the evader and the defender. Using optimal
control theory, the optimal control for the defender that
maximizes contact with the pursuer is posed and solved. In
the event that the evader is captured by the pursuer before
the pursuer escapes the engagement zone of the defender, some
suboptimal strategies of the defender provide equivalent contact
time. A derivation of defender’s headings that maximize contact
is presented along with examples that highlight the importance
of the initial conditions of the engagement scenario.

I. INTRODUCTION

Directed energy (DE) warfare is a means of using the
electromagnetic spectrum (EMS) to achieve one of many
military objectives including, but not limited to, the pro-
tection of friendly facilities. Rather than providing kinetic
defense (KD) by capturing a target vehicle, DE devices
expose a desired target over time. Furthermore, electronic
warfare (EW) applications in support of homeland defense
are vital to deter, detect, prevent, and defeat external threats
such as ballistic missiles, aircraft (manned and unmanned),
maritime vessels, land threats, hostile space systems, domes-
tic/international terrorism, and cyberspace threats [1]. In this
paper, we consider the defense of a non-maneuvering evader
against an interceptor.

In video-games the engagement zone (EZ) as described in
[1] is referred to as the area of effect (AoE) [2], [3]. The
basic game mechanics of an AoE are as follows: there exists
a region (usually circular) which surrounds a specific player;
whenever other players are located inside that boundary they
are effected by some predetermined effect which could be
friendly or adversarial in nature. This concept is akin to
electronic warfare, wherein the EMS is used to potentially
observe or inhibit the function of an adversary or friendly
asset.

Differential games where the objective of one of the
agents is to maximize the observation of an evader who
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aims at minimizing his observation are commonly refereed
to as “Surveillance Evasion Differential Games.” Early work
in Surveillance Evasion Differential Games (SEDGs) was
presented by Dobbie [4]. In his paper, Dobbie considered a
game of kind, determining if the pursuer is able to keep the
evader inside his detection region or not. Others extended
the work of Dobbie to consider the game of degree for the
SEDG [5]–[7]. In each of the works [4]–[7] the pursuer was
assumed to be faster than the evader; but, turn restrictions for
the pursuer were assumed, making the problem very relatable
to the game of two-cars [8], [9]. Fuchs and Metcalf also
presented a SEDG in which a mobile radar attempts to gather
sufficient information to identify a mobile target in minimum
time; simultaneously, the target attempts to maneuver in
such a way to maximize the identification time [10]. In this
work, the pursuer and evader from the SEDG is called the
“defender” and “pursuer” respectively; also, the defender is
assumed to be slower than the pursuer.

Other observation problems related to the SEDG are found
in [11]–[14]. LaValle et al. posed and solved a surveillance
evasion optimization problem (SEOP) consisting of an ob-
server and a target in a field of occluding obstacles [11].
Cartee et al. further investigated the SEOP under uncertainty
where the observer implements a fixed trajectory [12]. Ly
and Tsai also considered the SEOP consisting of multiple
observers and targets allowing for the observer(s) to vary
their course [13]. Garnett and Flenner presented an SEOP be-
tween a faster intelligence, surveillance and reconnaissance
(ISR) platform and slower aerial targets [14]. Because of the
model complexity a nonlinear program (NLP) solver was
used to solve the SEOP. He et al. proposed an air-to-ground
SEOP wherein a helicopter, with limited information, tracks
multiple ground targets restricted to a road network [15].

In each of the SEOPs and SEDGs above, the observer
is assumed to be faster than the target. Works which have
considered the pursuing agent to be slower than the evading
agent are found in [16], [17]. Breakwell presented a pursuit-
evasion differential game wherein a slower pursuer aims at
minimizing the miss distance to the evader in the event that
the evader can not be captured. Breakwell, also considered a
nonzero capture radius for the slower pursuer; and terminated
the game when the pursuer captured the slower evader [16].
Weintraub et al. extended the work of Breakwell by posing
an optimization problem which maximizes the time a target
remains (continuously) inside an observer’s circular detection
region for as long as possible [17].

The defense of an evader from an adversarial pursuer
has been considered in the past [18]–[22]. This scenario is
commonly referred to as “Active Target Defense.” Boyell



proposed the defense of a naval vessel by means of a defen-
sive torpedo against an incoming threat [18], [19]. Pachter,
Garcia, and Casbeer have studied active target defense by
kinetic means in great detail [20]–[22].

In this paper, the consideration of directed energy as a
means of defending a slow, non-maneuverable evader is
considered. In the engagement a faster pursuer aims at
intercepting the non-maneuvering evader in minimum time.
In an effort to aid the evader, a teamed defender equipped
with a directed energy device is considered. Rather than
focus on the technology or the more critical aspects of the
directed energy device, it is assumed that the efficacy of
the defensive device is increased by maximizing the time
that the pursuer is in an effective engagement zone (EZ) of
fixed range about the defender; and by this assumption, the
objective of the defender is to maximally expose the pursuer
prior to capture of the evader.

II. OPTIMAL CONTROL PROBLEM

Consider a three-agent engagement scenario comprised
of a fast pursuer (P ) which is engaged on a slow non-
maneuvering evader (E) – the evader moves on a straight-
line trajectory. In order to aid in the defense of the evader,
a defender (D) is considered which aims at keeping the
pursuer in its engagement zone (EZ) for as long as possible.
For this preliminary work, a circular EZ with radius RD

is considered. Rather than focus on the mechanism of the
defender, this paper considers the question: How should the
defender act so as to keep the pursuer in his circular EZ for
as long as possible? It is assumed that the pursuer’s strategy
is one of min-time capture of the evader and as a result, its
strategy is unaffected by the presence of the defender.

Consider the simple motion model for all agents where
the velocity of the pursuer, defender, and evader are vP , vD,
and vE respectively. The complete state of the engagement
is x = [xP , yP , xE , yE , xD, yD] ∈ R6, where (xP , yP ),
(xE , yE), and (xD, yD) are the positions of P , E, and D
respectively. Also define ψP , ψE , and ψD as the instanta-
neous heading of P , E, and D respectively. Motion is to
be restricted to the 2-dimensional plane, which is a common
assumption in the pursuit-evasion scenarios of Isaacs [8]. The
equations of motion for the three-agent scenario are

ẋP = vP cosψP ẋE = vE cosψE ẋD = vD cosψD

ẏP = vP sinψP ẏE = vE sinψE ẏD = vD sinψD.
(1)

The speed ratio between the pursuer and evader is defined
as µ = vE/vP . Similarly, the speed ratio between the pursuer
and the defender is defined as α = vD/vP . Since the
pursuer is faster than both the defender and the evader the
domain of the speed ratios is µ, α ∈ (0, 1). Without loss
of generality, consider the nondimensionalization of time so
that the pursuer’s speed is unity. Utilizing the speed ratio
parameter, the equations of motion in (1) may be simplified
to be

ẋP = cosψP ẋE = µ cosψE ẋD = α cosψD

ẏP = sinψP ẏE = µ sinψE ẏD = α sinψD

(2)

The non-maneuvering evader is on a fixed straight-line
course and its position and heading are known by the pursuer.
The pursuer, knowing the state of the evader, wishes to select
a heading which intercepts E in minimum time. Capture is
effected when P and E are coincident (i.e., point-capture).
During this pursuit, the defender has a circular EZ with
radius RD, and it desires to keep the pursuer inside its EZ
for the maximum possible continuous time; that is, that P
remains inside the EZ without interruption.

The initial conditions for the scenario are that P and E
are located in arbitrary locations in the 2-dimensional plane;
while D is located a distance RD from P . At time zero (t0),
the initial state x(t0) ≡ x0 ∈ I , where

I = {x|
!
(xP − xD)2 + (yP − yD)2 −RD = 0}.

The termination set which represents the point-capture of
the evader by the pursuer is defined as

CA = {x|(xP − xE)
2 + (yP − yE)

2 = 0}. (3)

The instant where the state satisfy (3) is defined as tgo; also
called the “time-to-go”. The termination set which represents
the escape of the pursuer from the defender is

CB = {x|(xP − xD)2 + (yP − yD)2 −R2
D > 0}. (4)

The instant where the state satisfies (4) is defined as texp;
also called the “exposure time.” The termination set of the
entire scenario is CA, that is, the pursuer captures the evader
regardless if the pursuer has escaped the EZ of the defender
prior to capturing the evader or if the pursuer has captured the
evader before escpaing the defender’s EZ. One objective of
this paper is to analyze the optimal strategy of the defender
when texp is either less than, greater than, or equal to tgo.
Also presented are the conditions when texp = 0, that is, that
the defender can not expose the pursuer at all no matter the
strategy of the defender.

The objective of the pursuer is to capture the evader in
minimum time – to make tgo a minimum. The objective cost
functional of the pursuer is

JA(x0;ψP (·)) =
" tgo

0

1 dt = tgo (5)

The optimal time-to-go is t∗go = min JA subject to the
termination set in (3) – the pursuer and evader are collocated
at final time. The goal for the pursuer is to find his optimal
heading which minimizes the objective cost functional in (5),
namely

ψ∗
P (t) = argmin

ψP

JA (6)

The objective of the defender is to keep the pursuer inside
his EZ for as long as possible. Since the pursuer is faster
than the defender, his escape is guaranteed for a finite EZ
range, RD. The objective cost function of the defender is

JB (x0;ψD(·)) =
" tf

0

−1 dt = −tf (7)

where the final time, tf = min(texp, tgo). This optimization
problem ends when the states of the scenario reaches C =
CA ∪ CB .



The optimal exposure time is t∗exp = min JB subject to the
termination set in (4) – the pursuer is no longer contained
inside the EZ of the defender. The goal is to find the
optimal defender’s heading which minimizes the objective
cost functional in (7), namely

ψ∗
D(t) = argmin

ψD

JB (8)

Two optimization problems are formulated and solved,
and their interaction is investigated in this paper. The
costate vectors pA = [pxP ,A pyP ,A pxE ,A pyE ,A] and
pB = [pxP ,B pyP ,B pxD,B pyD,B ] are introduced in order to
formulate the Hamiltonians for solving the two optimization
problems (A and B) as defined by the minimization of the
cost functionals in (5) and (7). Using the optimal control
theory, the Hamiltonian for the minimization described in
(3) and (5) is the following:

HA = pxP
cosψP + pyP

sinψP

+ pxE
µ cosψE + pyE

µ sinψE

(9)

The Hamiltonian for the minimization described in (4)
and (7) is the following:

HB = pxP
cosψP + pyP

sinψP

+ pxD
α cosψD + pyD

α sinψD

(10)

A. Necessary Conditions for Optimality

The procedure for solving the optimal strategies of the
pursuer and the defender are to first formulate and solve for
the min-time capture of the evader by the pursuer – to solve
the optimization problem as described in (3), (5), (6) and (9).
Then, using the solution to the optimization problem A, the
optimal strategy for the defender is then posed and solved
as described by (4), (7), (8) and (10).

Using the first-order optimality conditions, conclusions
about the optimal behavior of the defender and the pursuer
can be drawn. Using the Hamiltonians in (9) and (10),
the necessary conditions for optimality are found using the
following partial derivatives:

ẋ∗(t) = ∂H (x∗(t),p∗(t),u∗(t),t)
∂p∗(t) (11)

ṗ∗(t) = −∂H (x∗(t),p(t)∗,u∗(t),t)
∂x∗(t) (12)

0 = ∂H (x∗(t),p∗(t),u∗(t),t)
∂u∗(t) (13)

HA(tgo) = HB(texp) = 0 and the superscript, ∗, represents
optimality. Also, the control, u(t), for the pursuer or defender
(depending upon the problem being solved) are defined as
u(t) = ψP (t) for problem A and u(t) = ψD(t) for problem
B.

B. Optimal Control Problem, A - Pursuer Strategy

Lemma 1. The optimal strategy for the pursuer is a straight-
line constant-heading strategy.

Proof. Evaluating (12) using the Hamiltonian, HA from (9)
the costate dynamics are as follows:

ṗ∗xP ,A = ṗ∗yP ,A = ṗ∗xE ,A = ṗ∗yE ,A = 0 (14)

Further, evaluating the partial of HA with respect to the
pursuer’s control ψP in (13),

0 = −p∗xP ,A sinψ∗
P + p∗yP ,A cosψ∗

P . (15)

Rearranging and squaring each side of (15), the following is
obtained:

p∗2xP ,A sin2 ψ∗
P = p∗2yP ,A cos2 ψ∗

P = p∗2yP ,A(1−sin2 ψ∗
P ) (16)

solving for ψ∗
P ,

ψ∗
P = arcsin

#
p∗yP ,A/

$
p∗2xP ,A + p∗2yP ,A

%
(17)

Since the costates are constant, the heading of the pursuer is
constant under optimal play. !

Thus, the use of Apollonius circle is a useful tool for
solving for the min-time interception of the evader by the
pursuer [23].

Lemma 2. The optimal heading for the pursuer which
captures the non-maneuvering evader in minimum time is
ψ∗
P = sin−1(µ sin(ψE − θE)) + θE where µ is the speed

ratio between the evader and the pursuer, ψE is the heading
of the evader, and θE is the angle from the pursuer to the
evader relative to the x-axis in the global frame.

Proof. From necessary conditions for optimality, the opti-
mal strategy for the pursuer is a straight light trajectory.
Moreover, the evader is non-maneuvering and therefore, the
geometry of Apollonius provides the optimal strategy for
the pursuer to capture the slower non-maneuvering evader in
minimum time [8].

In Figure 1, the Apollonius circle is shown in magenta,
where the origin is located at O. The distance d = |PE|,
the speed ratio µ = vE

vP
, the position of P and E are used

to construct the Apollonius circle which defines the locus
of min-time interceptions possible by the pursuer because
the evader is non-maneuvering. Along the vector $PE the
geometry defined by Apollonius: OE = µ2d

1−µ2 and Rapol =

OI = µd
1−µ2 .

Evaluating the distance normal to PO which locates point
I from E and P , the following can be obtained.

EI sin(ψE − θE) = PI sin(ψ∗
P − θE) (18)

Recall, the speed ratio µ defines the relationship between
EI and PI to be: EI = µPI . Substitution into (18) the
following is obtained:

µPI sin(ψE − θE) = PI sin(ψ∗
P − θE) (19)

Solving for ψ∗
P :

ψ∗
P = sin−1(µ sin(ψE − θE)) + θE ! (20)

Lemma 3. Using the geometry provided by Apollonius’
circle, the time-to-go can be obtained as

tgo = d(σ1 +
$
σ2
1 + σ2) (21)

where σ1 = µ cos(ψE − θE)/(1−µ2) and σ2 = 1/(1−µ2).



Proof. Because the velocity of the pursuer has been normal-
ized to 1, the time-to-go in seconds is the same as the length
PI . This means, the length PI provides the time-to-go, tgo.
Consider △IEO; by the law of cosines,

OI
2
= EO

2
+ EI

2 − 2EO EI cos(ψE − θE) (22)

Define the distance between the pursuer and evader as d
and the evader-pursuer ratio is vE/vP = µ, where µ < 1.
From the Apollonius circle, EO = µ2d/(1 − µ2), OI =
µd/(1 − µ2), and EI = µPI . Substitution into (22) the
following is obtained:

#
µd

1−µ2

%2

=
#

µ2d
1−µ2

%2

+
&
µPI

'2

− 2
#

µ2d
1−µ2

% &
µPI

'
cos(ψE − θE)

(23)

Bringing all the terms to the right hand side and simpli-
fying (23),

0 = PI
2 − 2µd

1−µ2 cos(ψE − θE)PI − d2

1−µ2 (24)

Using the quadratic equation, PI may be solved in terms
of the evader-pursuer speed ratio and the pursuer-evader
distance using (23). Letting

a = 1, b = − 2µd cos(ψE−θE)
1−µ2 , c = − d2

1−µ2

The distance PI = −b±
√
b2−4ac
2a . Substitution of a, b,

and c, into the quadratic formula the distance PI can be
solved. The positive case is where the pursuer moves forward
and captures the evader, while the negative case is where
the pursuer moves backward and intersects the Apollonius
circle at a point of no interest. The quadratic equation for
the solution of PI is the following:

PI = µd cos(ψE−θE)
(1−µ2) + d

(#
µ cos(ψE−θE)

(1−µ2)

%2

+ 1
1−µ2 (25)

Since vP = 1, tgo = d(σ1 +
!
σ2
1 + σ2) where σ1 =

µ cos(ψE − θE)/(1− µ2) and σ2 = 1/(1− µ2). !

C. Optimal Control Problem, B - Defender Strategy

Lemma 4. The optimal strategy for the defender is a
straight-line constant-heading strategy.

Proof. Evaluating (12) using the Hamiltonian, HB from (10)
the costates dynamics are as follows:

ṗ∗xP ,B = ṗ∗yP ,B = ṗ∗xD,B = ṗ∗yD,B = 0 (26)

The costates for each individual optimization problem have
no dynamics and are constant under optimal play.

Taking the partial in (13) using the Hamiltonian in (10)
with respect to the control of the defender ψD, the following
is obtained:

0 = −p∗xD,Bα sinψ∗
D + p∗yD,Bα cosψ∗

D (27)

and therefore as derived in Lemma 1,

ψ∗
D = sin−1

)
p∗
yD,B!

p∗2
xD,B+p∗2

yD,B

*
(28)

Since the costates are constant, the heading of the pursuer is
constant under optimal play. !

Evaluating (13) using the Hamiltonian, HA from (9) the
optimal control is found to depend solely upon the costates
and the parameter µ. Similarly, evaluating (13) using the
Hamiltonian, HB from (10) the optimal control is found
to depend solely upon the costates and the parameter α.
Since the optimal costates are constant, it may be inferred
that the optimal control for the defender and the pursuer are
also constant; hence, all optimal strategies are straight-line
trajectories. Because all optimal strategies for the pursuer and
defender are straight line trajectories, the optimal heading for
the pursuer is described using the geometry of Apollonius,
and the optimal strategy for the Defender is that of the
maximum-time observation from [17].

Three scenarios of interest are examined: When tgo ≥ texp,
when tgo < texp, and when texp = 0.

1) Time-to-go greater than or equal to exposure time:
A figure which describes the engagement when the time-to-
go (tgo) is greater than or equal to the maximum possible
exposure time (texp) is shown in Figure 1.
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D

O

S

Q

x̂

ŷ

I

�PD

✓E

 P

 E

 
⇤
D

vP

vE

vD

Fig. 1. The directed energy defense scenario wherein the maximum
possible exposure time is less than the time-to-go.

From the figure, the interception point made by the pursuer
and evader occurs after the pursuer escapes the EZ of the
defender; this means that the heading taken by the defender
is one which maximizes the time that the pursuer is inside
his EZ.

Lemma 5. Suppose that scenario terminates in P exiting
the EZ prior to capturing E, then the optimal heading of the
defender is

ψ∗
D = cos−1

#
(α2−1) sinλPD

α2+2α cosλPD+1

%
, (29)

where α is the speed ratio between the defender and the
pursuer and λPD is the line of sight angle (positive counter
clockwise) from the pursuer to the defender.

Proof. See Theorem 1 from [17]. !

2) Exposure time greater than time-to-go: Consider the
case when the time-to-go is less than the maximum possible
exposure time; this case is illustrated in Figure 2. Since the
defender’s optimal strategy provides the maximum possible



exposure of the pursuer, the question which needs to be
answered is, “What heading bounds provide an exposure time
of at least time-to-go?” Specifically, what headings ψD1

and
ψD2 provide exactly tgo exposure time?

P
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D
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Q1

Q2

x̂

ŷ

I

�PD

✓E

 P

 E

 D1

 D2
vP

vE

vD
vD

Fig. 2. The directed energy defense scenario wherein the maximum pos-
sible exposure time is greater than the time-to-go. In this case, suboptimal
headings may be used to provide an exposure time equal to the time-to-go.

In order to solve for the defender headings which provide
exactly tgo exposure time, when the maximum possible
exposure provided by the optimal heading from (29) is imple-
mented, one begins with locating the interception point with
respect to the defender’s initial location. Where necessary,
the subscript [D] is used to represent a point measured from
the defender’s initial position, D. For example, the point I
with respect to D is I[D] = (xI[D], yI[D]); more explicitly,

xI[D] = xI − xD, yI[D] = yI − yD (30)

The location of the defender at time-to-go with respect to
D is Q[D] = (xQ[D], yQ[D]). Furthermore, the range between
the defender and the pursuer at the time-to-go is RD, and
therefore

R2
D =

&
xI[D] − xQ[D]

'2
+
&
yI[D] − yQ[D]

'2
(31)

Recognizing that the speed ratio between the defender and
the pursuer is α, the distance traversed by the pursuer is PI
and the distance traversed by the defender is αPI . Therefore
the location of the defender at the time-to-go is

Q[D] = αPI cosψDx̂+ αPI sinψDŷ (32)

In the pursuer global frame located at P , the location of
the defender at the time-to-go is

Q = αPI cosψDx̂+ αPI sinψDŷ + xDx̂+ yDŷ (33)

Substitution of (32) into (31) the following is obtained

R2
D =

&
xI[D] − αPI cosψD

'2

+
&
yI[D] − αPI sinψD

'2 (34)

Expanding (34) and collecting terms in ψD,

R2
D =x2

I[D] + y2I[D] + α2PI
2

− 2αPIxI[D] cosψD − 2αPIyI[D] sinψD

(35)

Notice that (35) has the form A cosψD+B sinψD+C =
0, where

A = −2αPIxI[D]

B = −2αPIyI[D]

C = x2
I[D] + y2I[D] + α2PI

2 −R2
D

(36)

Using the trigonometric half-angle formula, sinψD and
cosψD may be re-written as a function of tanψD. The
identity is repeated here for the reader’s convenience.

cosψD = 1−tan2(ψD/2)
1+tan2(ψD/2) , sinψD = 2 tan(ψD/2)

1+tan2(ψD/2)

Let τ = tan(ψD/2), then (36) may be re-written in terms
of τ .

0 = A 1−τ2

1+τ2 +B 2τ
1+τ2 + C

= A(1− τ2) + 2Bτ + C(1 + τ2)

= (C −A)τ2 + 2Bτ + (A+ C)

(37)

Using the quadratic formula:

τ =
−2B±

√
4B2−4(C−A)(A+C)

2(C−A) = −B±
√
B2−C2+A2

C−A
(38)

Therefore, because of the quadratic equation, two solutions
(as expected) for ψD exist.

ψD1 = 2arctan
#

−B+
√
B2−C2+A2

C−A

%

ψD2 = 2arctan
#

−B−
√
B2−C2+A2

C−A

% (39)

Axiom 1. When the exposure time is greater than the time-
to-go all headings in the closed interval ψD ∈ [ψD1

,ψD2
]

provide a final time of time-to-go.

Axiom 2. The maximum exposure time (texp), as described
in [17], as a function of the line of sight angle, λPD, the
speed ratio between the defender and the pursuer, α, and
radius of the EZ, RD is

texp = 2R(α+ cosλPD)/(1− α2). (40)

Axiom 3. The line of sight angle, λPD, takes on angles
from −180 deg to 180 deg. The exposure time (texp) is as
described in (40). For all possible values of λPD, the
maximum possible exposure time occurs when λPD = 0;

texp = max
λPD

2R(α+cosλPD)
1−α2 = 2R(α+1)

1−α2 (41)

Axiom 4. Setting (40) equal to zero, the line of sight angles
by which exposure is not possible are in the interval

λPD ∈ [−π,− cos−1(−α)] ∪ [cos−1(−α),π] (42)

Axiom 5. The final time is limited when the evader is
captured by the pursuer before the pursuer escapes the
defender’s EZ; this occurs when texp > tgo. In the event
that 2R(α+1)/(1−α2) > tgo the line-of-sight angle where
tgo = texp occurs at the angle λPD,go.

λPD,go ≜ cos−1
#

(1−α2)tgo

2R − α
%

(43)



III. MAIN RESULTS

From the defender’s perspective, the optimal control prob-
lem ends when either the pursuer captures the evader or when
the pursuer escapes the EZ of the defender, C = CA ∪ CB .
In cases where the line of sight angle λPD is as described
in (42), the defender terminates immediately, as it is unable
to keep the pursuer in his EZ for any amount of time. From
the pursuer’s perspective, the optimal control problem ends
when he captures the evader, CB .

A. Exposure Time

Theorem 1. Given the optimal control problem specified by
(2), (4) and (7) the optimal final time t∗f is

t∗f =

+
,-

,.

tgo λPD ∈ Λgo

texp from (40) λPD ∈ Λ∗

0 λPD ∈ Λ0

(44)

where

Λ0 =

!
λPD

"""""
−π ≤ λPD ≤ − arccos(−α),

arccos(−α) ≤ λPD ≤ π

#

Λgo =

!
λPD

""""" λPD ≤
"""" arccos

$
(1−α2)tgo

2R
− α

% """"

#

Λ∗ =

!
λPD

""""" λPD /∈ Λ0 and λPD /∈ Λgo

#

Proof. Three scenarios are possible:
1) P captures E before escaping D’s EZ.

In the first case, λPD ∈ Λgo implies that P captures
E before escaping D’s EZ. Therefore, from Lemma 3
tgo < texp. Therefore, t∗f = tgo by Axiom 5.

2) P captures E after escaping D’s EZ.
In the second case, λPD ∈ Λ∗ implies that P captures
E after escaping or lies on the border of D’s EZ.
Therefore, from Axiom 2, t∗f = texp from (40).

3) D is incapable of exposing P for any amount of time.
λPD ∈ Λ0 implies that D is unable to expose P for
any amount of time and therefore t∗f = 0 by Axiom 4.

!

Corollary 1. In the event that texp < tgo, Λgo is empty.

Proof. texp is the maximum possible time that the pursuer is
contained in the EZ of the defender by Axiom 3. If λPD ∈
Λgo then by axiom 2:

texp = 2R(α+ cosλPD)/(1− α2)

and by the definition of Λgo

texp ≥ 2R
1−α2

#
α+

#
(1−α2)tgo

2R − α
%%

(45)

expanding:

texp ≥ 2Rα
1−α2 + 2R

1−α2

(1−α2)tgo

2R − 2Rα
1−α2 (46)

And therefore texp ≥ tgo. By contradiction, in order for λPD

to be an element of Λgo, texp must be greater than tgo; but,
by our assertion, texp < tgo. !

B. Defender Strategy

Theorem 2. The Defender’s strategy depends upon the
initial locations of the agents as well as the problem pa-
rameters: α, µ, λPD, and ψE . In the event that the defender
in unable to expose the pursuer for any amount of time,
e.g. texp = 0 no matter the heading that ψD should take,
the defender’s strategy is of no consequence. However, for
exposure times greater than zero, the defender’s choice of
heading is

ψ∗
D =

+
,,-

,,.

{ψD|ψD ∈ [ψD1 ,ψD2 ]} λPD ∈ Λgo

arccos
#

(α2−1) sinλPD

α2+2α cosλPD+1

%
λPD ∈ Λ∗

undefined λPD ∈ Λ0

(47)

Proof. Three scenarios are possible
1) P captures E before escaping D’s EZ

In the first case, λPD ∈ Λgo implies that P captures
E before escaping D’s EZ. Therefore by Axiom 1,
ψ∗
D = {ψD|ψD ∈ [ψD1 ,ψD2 ]}.

2) P captures E after escaping D’s EZ
In the second case, λPD ∈ Λ∗ implies that P captures
E after escaping D’s EZ. Therefore from Lemma 5,
ψ∗
D = arccos

#
(α2−1) sinλPD

α2+2α cosλPD+1

%

3) D is incapable of exposing P for any amount of time.
ψDP ∈ Λ0 implies that D is unable to expose P for
any amount of time by Axiom 4.

!
IV. EXAMPLES

Consider the directed energy defense scenario with the EZ
radius of 2km, the speed ratio between the evader and the
pursuer is µ = 0.5 and the speed ratio between the defender
and the pursuer is α = 0.6. The evader takes a heading of
110 degrees from East. In order to highlight the defender
strategy in (47), two cases are considered: λPD = −70deg
and λPD = −40deg. Common to the examples, the pursuer
is located at the origin, P = (0, 0), and the evader is located
at E = (6, 2).

The first step in both examples is to construct the Apol-
lonius circle and determine the heading of the pursuer as
well as the time-to-go. Using (20), the optimal pursuer
strategy which intercepts the evader in minimum time is
found to be 48.4 deg. from East. Using (21) the time-to-go
is found to be 7.189 sec. The maximum possible exposure
time, independent of the bearing of the defender from the
pursuer is found using (41); texp = 10.000 sec. Also, the
sets Λ0,Λexp,Λgo, and Λ∗ are found to be:

Λ0 = [−180,−126.870]deg ∪ [126.870, 180]deg
Λgo = [−56.620, 56.6120]deg
Λ∗ = (−126.870,−56.620]deg ∪ [56.620, 126.870)deg

.

A. Example 1: λPD = -70 deg

The first example highlights the case where the exposure
time is less than the time-to-go. For this example, consider
the defender to be 70 deg starboard from the pursuer’s
heading and 2km from the pursuer – at the onset the pursuer



is inside the defender’s EZ. A figure which describes this
example is shown in Figure 3.

Fig. 3. The directed energy defense scenario where the bearing from the
pursuer to the defender is 70 deg starboard. The speed ratio between the
evader to the pursuer is µ = 0.50 and the speed ratio between the defender
and the pursuer is α = 0.60.

In Figure 3, the solid red line represents the pursuer’s
course, the solid black line represents the defender’s course,
and the solid blue line represents the evader’s course. The
points P , E, and D represent the initial location of the
pursuer, evader, and defender respectively. The points S
represent the location of the pursuer when he escapes the
defender’s EZ, who is located at the point Q. The point I
represents the capture location of the evader by the pursuer
which is dictated by the Apollonius circle centered at the
point O.

In this example, the angle λPD = −70 deg ∈ Λ∗ and
the exposure time and optimal heading are found using (44)
and (47) respectively. texp = 5.888 sec and ψD = 68.281
deg from East.

From this scenario, the defender heads toward the pursuer
in order to maximize the time that the pursuer stays inside
his EZ. If the defender were to deviate from this optimal
heading (ψ∗

D), the time that the pursuer is exposed would
be less than the calculated 5.888 sec. Since the pursuer does
not capture the evader before the defender loses contact with
the pursuer, the defender has a unique optimal heading that
maximizes the time that the pursuer is inside his EZ.

B. Example 2: λPD = -40 deg

The second example highlights the case where the expo-
sure time is greater than the time-to-go. For this example,
consider the defender to be 40 deg starboard from the
pursuer’s heading and 2km from the pursuer. A figure which
describes this example is shown in Figure 4. In Figure 4,
the solid red line represents the pursuer’s course, the solid
black line represents the defender’s course, and the solid
blue line represents the evader’s course. The points P , E,
and D represent the initial location of the pursuer, evader,
and defender respectively. The point I represents the capture
location of the evader by the pursuer which is dictated by the
Apollonius circle centered at the point O. Since the pursuer
is inside the defender’s EZ for the entire engagement, there
exists an interval of headings which the defender can take
which ensure that he is contained in his EZ for the entirety

Fig. 4. The directed energy defense scenario where the bearing from the
pursuer to the defender is 40 deg starboard. The speed ratio between the
evader to the pursuer is µ = 0.50 and the speed ratio between the defender
and the pursuer is α = 0.60.

of the engagement until the pursuer captures the evader. The
limiting headings are shown by the arc between Q2 and Q1.

In this example, the angle λPD = −40 deg ∈ Λgo and
the exposure time and optimal heading are found using (44)
and (47) respectively. texp = tgo = 7.189 sec and using (39)
the limiting headings ψD1 = 45.869 deg and ψD2 = 76.584
deg from East. This means, that if the defender takes any
heading between 45.869 and 76.584 deg, the pursuer will
stay inside the EZ for the entirety of the engagement.

Next, consider every possible line of sight angle from the
pursuer to the defender, λPD ∈ [−180, 180] deg. Assuming
that the defender implements the strategy described in (47)
and the pursuer captures the evader in minimum time using
the optimal heading in (20), the exposure time as a function
of the line of sight angle λPD is shown in Figure 5.

Fig. 5. The exposure time as a function of the line of sight angle λPD is
depicted in this polar plot when E = (6, 2), α = 0.6, and µ = 0.50. This
polar plot is a graphical representation of (44)

In Figure 5 the blue Limaco̧n describes the time that the
pursuer could remain inside the EZ of the defender if the
evader were not captured by the pursuer. The yellow circle
represents the time-to-go – the evader is captured by the
pursuer. The red lines describe the line of sight headings by
which the pursuer is unable to be contained inside the EZ of
the defender regardless of the defender’s strategy. The black
circles represent the angle and time at which the pursuer is
inside the defender’s EZ for exactly the same time as the
time-to-go.

In Figure 6 the strategy of the defender as a function of
the line of sight angle λPD is shown.



Fig. 6. The defender’s heading (ψD) as a function of the line of sight
angle λPD as described in (47). The case presented is that of the examples
where E = (6, 2), α = 0.6, and µ = 0.50.

In Figure 6 the red regions represent line of sight angles
where the defender is unable to contain the pursuer for any
amount of time. The blue line represents the optimal strategy
of the defender. The shaded blue region represents the cases
where the time-to-go limits the amount of time that the
pursuer is contained in the defender’s EZ.

An interesting observation about the shaded blue region
in Figure 6 is that the shaded region is widest at λPD = 0.
This is because the maximum possible exposure time texp
occurs at λPD = 0 and because the pursuer captures the
evader before it can escape the EZ of the defender. Also,
due to the fact that the amount of time that the defender
can keep the pursuer inside his EZ decreases as he deviates
from the optimal heading ψ∗

D, the amount of deviation when
λPD = 0 is a maximum; thus, the blue shaded region is
the widest when λPD = 0. The shaded region collapses to
a unique heading at the angle ±λPD,go = ±56.620 deg as
described in (43). This means that for headings λPD ∈ Λ∗
the defender’s strategy is unique and is ψ∗

D as in (29).

V. CONCLUSIONS

In conclusion, the directed energy defense of a non-
maneuvering evader against an incoming threat has been
presented. Making use the optimal control theory, two op-
timization problems are posed and solved in tandem. First,
the min-time capture of a non-maneuverable evader and then
the max-time exposure of the pursuer by a defender with
circular engagement zone. From the costates, the optimal
trajectories of the pursuer and the defender were shown to
be straight line trajectories. Leveraging the optimal observer
strategy from [17] for the defender, the optimal defender
strategy and exposure time is found in closed form.

Two examples are presented in order to demonstrate the
intricacies surrounding the target defense scenario. The first
example demonstrates the defender’s optimal strategy when
the pursuer captures the evader after escaping the defender’s
EZ and second demonstrates the defender’s optimal strategy
when the pursuer captures the evader before it can escape the
defender’s EZ. Also presented are conditions for which the
line-of-sight angle limits the time of exposure – the exposure
time is zero, independent of the defender’s chosen strategy

or limited by the time-to-go.
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